D ∈ [-5 ; ]
Объяснение:
D (Область определения) - это все х
По условию дано: y=√(5-14x-3x²)
корень можно извлекать из числа ≥ 0
Найдём при каких значениях икс 5-14x-3x² ≥ 0:
-3x²-14x+5 ≥ 0
3x²+14x-5 ≤ 0
D = b² - 4ac = 14² - 4*(-5)*3 = 196 + 60 = 256 = 16²
=
=
=
=
=
= -5
Применим метод интервалов:
расположим получившиеся корни на числовой прямой
+ _ +
--------------------5-------------------------------------> x
Решением этого неравенства 3x²+14x-5 ≤ 0 является [-5 ; ]
Сторона данного треугольника а(3) равна Р:3=6√3:3=2√3 дм
Формула радиуса окружности, описанной около правильного треугольника:
R=a/√3 =>
R=2√3:√3=2 дм
Формула стороны правильного многоугольника через радиус вписанной окружности:
а(n)=2r•tg(180°:n), где r – радиус вписанной окружности, n – число сторон,
Для правильного шестиугольника tg(180°:n)=tg30°=1/√3
a₆=2•2•1/√3=4/√3
P=6•4/√3=8√3 дм
—————
Как вариант: Правильный шестиугольник состоит из 6 равных правильных треугольников.
На рисунке приложения ОН - радиус описанной около правильного треугольника окружности и в то же время высота одного из 6 правильных треугольников, все углы которого 60°; АВ - сторона шестиугольника. Задача решается с т.Пифагора.