Две трубы,работая вместе,могут наполнить бассейн за 10 минут. если бы первая труба работала одна, наполнение бассейна заняла бы 15 минут. сколько времени понадобится одной второй трубе, чтобы наполнить бассейн?
Обозначим количество работы(бассейн) за S, тогда производительность первой трубы - производительность второй трубы - x общая производительность двух труб - 15x = 10x+150 5x=150 x=30 ответ: 30 минут
Пусть весь путь - S. Скорость гркзовика - v(г). Скорость легкового автомобиля - v(a). Время затраченное грузовиком и легковым автомобилем на весь путь t(г) и t(a) соответственно. По условию t(a)=t(г)-1.
Найдём скорость автомобился и грузовика из формулы v=S/t: v(a)=S/t(a)=S/(t(г)-1) v(г)=S/t(г).
По условию сказано, что при движении навстречу друг другу они затратили 1 час и 12 минут, т.е. t(3)=1,2 ч. Так как они двигались на встречу друг к другу, то общая скорость v(o)=v(a)+v(г). Тогда весь путь равен S=v(o)t(3). Подставляем значение общей скорости: S=(v(a)+v(г))t(3) Подставляем значения скоростей, которые нашли ранее: S=(S/(t(г)-1) + S/t(г))×t(3) Выносим S за скобки и сокращаем: 1=(1/(t(г)-1) + 1/t(г))×t(3) Приводим всё к общему знаменателю внутри скобок и получаем уравнение: t(г)^2-3.4t(г)+1.2=0 Решая уравнение находим время которон затратил грузовик на весь путь t(г)=3ч. (Корень 0.4 не подойдет, т.к. тогда получится, что время автомобилч на дорогу отрицательно) Ну а время автомобиля на дорогу t(a)=3-1=2
1) В простейшем случае достаточно выбрать один центр и из него построить 24 дороги ко всем остальным деревням. Все деревни будут связаны друг с другом через центр. Но если надо, чтобы от каждой деревни к каждой шла отдельная дорога, тогда рассуждаем так. Мы проводим от каждой из 25 деревень дороги ко всем 24. Но, если мы соединили деревни А и В, то эта же дорога соединяет В и А. Значит, количество дорог надо разделить на 2. 25*24/2 = 25*12 = 300. Но в ответе почему-то 600.
2) 9^(x+6) + 3^(x^2) = 2*3^(x^2 + x + 6) = 2*3^(x^2)*3^(x+6) Видимо, здесь опечатка в задании, потому что это уравнение имеет 3 иррациональных корня: x1 ~ -6,63; x2 ~ -1,87; x3 ~ 2,87, но как его решать, или хотя бы узнать, что корней 3 - совершенно непонятно. Корни я нашел с Вольфрам Альфа.