Итак-функция пятой степени..Как всегда исследование начнем с областей определения и значения.Область определения-R,область значения тоже.Затем нули функции-а это решения уравнения..Четность-нечетность:если х не равен нулю-то функция общего вида.Промежутки знакопостоянства это следующий пункт:смотрим на коэффициент при старшем члене и на дискриминант..меня правда смущает что уравнение пятой степени-_-.Дальше монотонность-если коэф при х в пятой степень больше нуля то функция возрастает от икс вершины до плюс бесконечности соответсвенно если меньше нуля(коэф при х в пятой)то фунция убывает от минус бесконечности до вершины параболы.И экстремумы:если коэффициент больше нуля-икс минимум равен икс вершине,игрик минимум равен игрик вершине.Если коэф больше нуля,то икс максимум,игрик максимум равен икс и игрик вершинам соответсвенно.А вы красивая однако)
Поскольку необходимо представить число 68 в виде суммы двух чисел, то пусть первое число х, тогда второе число (68-х). Тогда сумма квадратов слагаемых будет равна: х²+(68-х)²=х²+68²-2*68*х+х²=2х²-136х+4624
Здесь можно найти минимальное значение 2-мя 1) с производной (2х²-136х+4624)'=4x-136 4x-136=0 4x=136 x=136:4 х=34 Значит будет 2 одинаковых положительных числа 34 и 34.
2) с графика y=2х²-136х+4624 Это парабола - ветви направлены вверх. Значит наименьшее значение будет в вершине параболы. х₀=-b/2a=-(-136)/4=34