пусть первое число равно х, а второе у. Тогда 2х+у=11, а x^2+y^2=25.
Получаем систему уравнений:
2х+у=11;
x^2+y^2=25.
Выразим из первого уравнения у:
у=11-2х
и подставим полученное значение во втрое:
x^2+(11-2x)^2=25
x^2+121-44x+4x^2=25
5x^2-44x+121-25=0
5x^2-44x+96=0
Найдем дискриминант квадратного уравнения
D=b^2-4ac=1936-4*5*96=16
Так как дискриминант больше нуля то, квадратное уравнение имеет два корня:
x1=(-b+√D)/(2a)=(44+√16)/(2*5)=4.8
x2=(-b-√D)/2a=(44-√16)/(2*5)=4
В условии задачи сказано, что взяты натуральные числа, значит, нам подходит только х=4
Найдем у:
у=11-2х
у=11-2*4
у=3
ответ: взяты числа 4 и 3
х^2-6х+8>0
х^2-6х+8=0
дискрименант =36-32=4
х=(6-4):2=1
х=(6+4):2=5
рисуешь координатную прямую: + 1 - 5 +
х принадлежит (-бесконечности;1)и(от5;до +бесконечности)
(бесконечность рисуется,как перевернутая восьмерка)
2)
знаменатель(то что внизу):
х(3х+2)=0
х1=0
3х=-2
х2=-две третих
числитель:
(х+2)х(х-3)=0
х+2=0
х=-2(посторонний корень)
х=0
х-3=0
х=3
рисуешь координатную прямую и отмечаешь на ней числа
0 3
вот я только не помню,там нужно посторонние корни отмечать