Я не стану спецом лезть в инет и чекать где она применяется, я лишь приведу свои примеры, где тригонометрия мне пригодилась, да они будут тупыми, но все же :D
Во-первых, без тригонометрии очень сложно в физике, при решении сложных физических задач на механику, электродинамику очень часто приходится знать тригонометрию, особенно в теме колебательного движения, так как гармонические колебания происходят по закону синуса или косинуса, то есть графиком будет синусоида.
Во-вторых, когда тебе может быть скучно, допустим ты находишься в своей машине на горке под определенным углом к горизонту и тебе нужно найти проекцию силы тяжести, которая тянет твою машину вниз, то без тригонометрии тоже сложно это сделать. Ну это все шутки конечно...
Тригонометрия нужна в разработке 3-D игр, даже не зачем объяснять почему - это итак очевидно, нужно, допустим, определить траекторию полета какого-то тела или проверить столкнутся ли тела, либо тебе необходимо заставить объект двигаться в любом направлении - это все без так называемых "синусов" и "косинусов" не сделать.
Вообщем говоря стоит признать уже всем, что без тригонометрии нам никуда и как ни крути все равно придется ее знать.
Я не стану спецом лезть в инет и чекать где она применяется, я лишь приведу свои примеры, где тригонометрия мне пригодилась, да они будут тупыми, но все же :D
Во-первых, без тригонометрии очень сложно в физике, при решении сложных физических задач на механику, электродинамику очень часто приходится знать тригонометрию, особенно в теме колебательного движения, так как гармонические колебания происходят по закону синуса или косинуса, то есть графиком будет синусоида.
Во-вторых, когда тебе может быть скучно, допустим ты находишься в своей машине на горке под определенным углом к горизонту и тебе нужно найти проекцию силы тяжести, которая тянет твою машину вниз, то без тригонометрии тоже сложно это сделать. Ну это все шутки конечно...
Тригонометрия нужна в разработке 3-D игр, даже не зачем объяснять почему - это итак очевидно, нужно, допустим, определить траекторию полета какого-то тела или проверить столкнутся ли тела, либо тебе необходимо заставить объект двигаться в любом направлении - это все без так называемых "синусов" и "косинусов" не сделать.
Вообщем говоря стоит признать уже всем, что без тригонометрии нам никуда и как ни крути все равно придется ее знать.
Геометрический смысл производной в точке: угловой коэффициент касательной в точке равен производной функции в этой точке
Находим производную.
Находим производную в точке х₀.
Приравниваем её к нулю.
Находим точку х₀
1) f`(x)=(x²-4x)`=2x-4
f`(x₀)=2x₀-4
2x₀-4=0
х₀=2
тогда
у₀=2²-4·2=-4
Уравнение касательной у=kx+b k=0
найдем b
у₀=ox₀+b ⇒ b=y₀
b=-4
уравнение касательной в точке х=2
у=-4
2)
f`(x)=(x²+6x+10)`=2x+6
f`(x₀)=2x₀+6
2x₀+6=0
х₀=-3
тогда
у₀=2²+6·(-3)+10=4-18+10=-4
Уравнение касательной у=kx+b k=0
найдем b
у₀=ox₀+b ⇒ b=y₀
b=-4
уравнение касательной в точке х=-3
у= -4
3)
y=1-x²
f`(x)=(1-x²)`=-2x
f`(x₀)=-2x₀
- 2x₀=0
-2 х₀=0
тогда
у₀=1-(-2)²=-3
Уравнение касательной у=kx+b k=0
найдем b
у₀=ox₀+b ⇒ b=y₀
b=-3
уравнение касательной в точке х=0
у= -3