ответ:ДЛЯ КУРАТОРОВ! Я учусь на дистанционном обучении уже три года! Это мне выдавал учитель! По этому я училась! Вот)
Объяснение: Уравнение =
Если ∣∣∣∣>1, то уравнение = не имеет корней.
Например, уравнение =2 не имеет корней.
Если ∣∣∣∣≤1, то корни уравнения выражаются формулой =(−1)+π,∈ℤ.
Что же такое ? Арксинус в переводе с латинского означает «дуга и синус». Это обратная функция.
Если ∣∣∣∣≤1, то (арксинус ) — это такое число из отрезка [−π2;π2], синус которого равен .
Говоря иначе:
=⇒=,∣∣∣∣≤1,∈[−π2;π2].
Рассмотрим данную теорию на примере.
Пример:
найти 12.
Выражение 12 показывает, что синус угла равен 12, т. е. =12.
Далее просто находим точку этого синуса на числовой окружности, что и является ответом:
sin.png
точка 12, находящаяся на оси , соответствует точке π6 на числовой окружности.
Значит, 12=π6.
Если π6=12, то 12=π6.
В первом случае по точке на числовой окружности находим значение синуса, а во втором — наоборот, по значению синуса находим точку на числовой окружности. Движение в обратную сторону. Это и есть арксинус.
Теорема. Для любого ∈[−1;1] справедлива формула (−)=−.
Частные случаи:
1. =0⇒=π,∈ℤ;
2. =1⇒=π2+2π,∈ℤ;
3. =−1⇒=−π2+2π,∈ℤ.
Пример:
решить уравнение =−12.
Используем формулу =(−1)+π,∈ℤ
и получаем ответ =(−1)(−π6)+π,∈ℤ.
1.
а) (3y - 2)(3y + 2) = 9y² - 4
б) (3y - 1)² = 9y² - 6y + 1
в) (4a + 3k)(4a - 3k) = 16a² - 9k²
2.
(b-8)² - (64 - 6b) = b² - 16b + 64 - 64 + 6b = b² - 10b = b(b - 10)
3.
a) 25 - y² = (5 - y)(5 + y)
б) a² - 6ab + 9b² = a² - 2×1×3ab + (3b)² = (a - 3b)²
4.
36 - (6 - x)² = x(2,5 - x)
36 - (36 - 12x + x²) = 2,5x - x²
12x + x² = 2,5x - x²
2x² + 9,5x = 0
x(2x + 9,5) = 0
x = 0 или 2x = -9,5
x = 0 или x = -4,75
ответ: 0; -4,75
5.
а) (c² - 3a)(3a - c²) = -(3a - c²)(3a - c²) = -(3a-c²)²
б) (3x + x³)² = 9x² + 6x⁴ + x⁶
в) (3 - k)²(k+3)² = (3 - k)²(3+k)² = [(3-k)(3+k)]² = (9 - k²)²
6.
а) (3x - 2)² - (3x - 4)(4 + 3x) = 0
(3x - 2)² + (4 + 3x)² = 0
9x² - 12x + 4 + 16 + 24x + 9x² = 0
12x + 20 = 0
12x = -20
3x = -5
x = -5/3
б) 25y² - 64 = 0
y² = 64/25
y = ± 8/5
7.
а) 36a⁴ - 25a²b² = a²(36a² - 25b²) = a²(6a - 5b)(6a + 5b)
б) (x - 7)² - 81 = (x - 7 - 9)(x - 7 + 9) = (x - 16)(x + 2)
Найти наименьшее значение функции на отрезке [0;π]
y=17x - 7sinx + 4
Находим первую производную функции:
y' = - 7cosx + 17
Приравниваем ее к нулю:
- 7cosx + 17 = 0
Глобальных экстремумов нет