Коэффициент подобия по определению считается по линейным размерам .
Для периметра (сумме линейных размеров) он равен k, для площадей k^2,
для объемов k^3.Тогда периметр равен 12*4=48 см, площадь равна 9*4^2=144 кв. см
Как-то так
Объяснение:
<!--c-->
Отношение периметров двух подобных треугольников равно коэффициенту подобия.
P(ABC)P(RTG)=k20P(RTG)=19P(RTG)=9⋅20=180(см)
Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия.
S(ABC)S(RTG)=k26S(RTG)=(19)26S(RTG)=181S(RTG)=6⋅81=486(см2)
1. < var > x^3y^34z^22y=8x^3y^4x^2 < /var ><var>x3y34z22y=8x3y4x2</var>
2. < var > -2x^60,5x^2y^3=-x^8y^3 < /var ><var>−2x60,5x2y3=−x8y3</var>
3. < var > (-5z^2y^3)^3=-125z^6y^9 < /var ><var>(−5z2y3)3=−125z6y9</var>
4. < var > -0,03ab^3=-0,03*(-4)*(-2)^3=0.96 < /var ><var>−0,03ab3=−0,03∗(−4)∗(−2)3=0.96</var>
5. < var > (18a^3b^2c)(\frac{1}{6}ab^3c^2)(-\frac{1}{3}a^2bc^3)=-a^6b^6c^6 < /var ><var>(18a3b2c)(61ab3c2)(−31a2bc3)=−a6b6c6</var>
Объяснение:
Рад
0,9n+2/3n-1/6n-0,9-0,9n, значит 0,9n-0,9n- cокрашается будет ноль, мы не пишем, остается.
0,9n+2/3n-1/6n-0,9-0,9n= =2/3n-1/6n-0,9=2 (квадрат 2)/3 ( квадрат 2) n - 1/6 n -0,9= 2*2/ 3 *2n-0,9= 4/6n-1/6n-0,9= 3/6n-0,9=
= 3:3/6:3n-0,9=1/2n-0,9= 1:2n-0,9=
= 0,5n-0,9- так остается.
ответ: 0,5n-0,9.