sin (x/2)=2 sin (x/4)cos(x/4) cos(x/2)=cos²(x/4)-sin²(x/4) 1=sin²(x/4)+cos²(x/4)
Уравнение примет вид: 2 sin (x/4)cos(x/4)-3·(cos²(x/4)-sin²(x/4))=3·(sin²(x/4)+cos²(x/4)) или 2 sin (x/4)cos(x/4)-3·cos²(x/4)+ 3·sin²(x/4)=3·sin²(x/4)+ 3·cos²(x/4)
2 sin (x/4)cos(x/4)-6·cos²(x/4)=0
2·cos(x/4)·(sin(x/4)-3cos(x/4))=0
cos(x/4)=0 или sin(x/4)-3cos(x/4)=0
х/4=π/2 + πk, k∈ Z или tg(x/4)=3 x=2π+4πk,k∈Z x/4=arctg 3 + πn, n∈Z x=4arctg 3 + 4πn, n∈Z
Решение Не выполняя построения, установите взаимное расположение графиков лин.функций: Будем проверять равенство коэффициентов при х и свободные члены y = k₁ + b₁ y = k₂x + b₂ сократим дроби 1) y=12/16x+8/10 = 3/4x + 4/5 y=15/20x+4/5 = 3/4x + 4/5 k₁ = k₂ и b₁ = b₂ Таким образом: y=12/16x+8/10 и y=15/20x+4/5 уравнения равносильны, значит графики этих функций - одна и та же прямая. То есть графики сливаются или совпадают.
2) y=8/9x-1/7 и y=8/9x+1/10 k₁ = k₂ = 8/9 значит графики этих функций - параллельны.
3) у=7x+8 и y=*x-4 k₁ ≠ k₂ и b₁ ≠ b₂ значит графики этих функций - пересекаются
4) y=*x-15 и y=3x+2 k₁ ≠ k₂ и b₁ ≠ b₂ значит графики этих функций - пересекаются
sin (x/2)=2 sin (x/4)cos(x/4)
cos(x/2)=cos²(x/4)-sin²(x/4)
1=sin²(x/4)+cos²(x/4)
Уравнение примет вид:
2 sin (x/4)cos(x/4)-3·(cos²(x/4)-sin²(x/4))=3·(sin²(x/4)+cos²(x/4))
или
2 sin (x/4)cos(x/4)-3·cos²(x/4)+ 3·sin²(x/4)=3·sin²(x/4)+ 3·cos²(x/4)
2 sin (x/4)cos(x/4)-6·cos²(x/4)=0
2·cos(x/4)·(sin(x/4)-3cos(x/4))=0
cos(x/4)=0 или sin(x/4)-3cos(x/4)=0
х/4=π/2 + πk, k∈ Z или tg(x/4)=3
x=2π+4πk,k∈Z x/4=arctg 3 + πn, n∈Z
x=4arctg 3 + 4πn, n∈Z
ответ. x=2π + 4πk,k∈Z ; x=4arctg 3 + 4πn, n∈Z