На заводе производится сплав, в котором на 2 кг алюминия приходится 1 кг никеля. 2 + 1 = 3 кг сплава.
Первая шахта: 60 рабочих; 5 рабочих часов в день; 2 кг алюминия или 3 кг никеля 1 рабочий за 1 час. Общее количество рабочих часов в день: 60*5 = 300 часов. 1 час / 3 кг = 1/3 часа нужно, чтобы один рабочий добыл 1 кг никеля. Для 3 кг сплава требуется 1/3 часа на добычу 1 кг никеля и 1 час на добычу 2 кг алюминия. 1 час + 1/3 часа = часа.
Пропорция часа - 3 кг сплава 300 часов - Х кг сплава кг сплава ------------------------------------------ Вторая шахта: 260 рабочих, 5 рабочих часов в день, 3 кг алюминия или 2 кг никеля 1 рабочий за 1 час. Общее количество рабочих часов в день: 260*5 = 1300 часов. 1 час / 2 кг = 1/2 часа, чтобы один рабочий добыл 1 кг никеля. 1 час / 3 кг = 1/3 часа, чтобы один рабочий добыл 1 кг алюминия. Для 3 кг сплава требуется 1/2 часа для добычи 1 кг никеля и 1/3 часа * 2 кг = 2/3 часа для добычи 2 кг алюминия. 1/2 часа + 2/3 часа = часа.
Пропорция часа - 3 кг сплава 1300 часов - Х кг сплава кг сплава
Обе шахты могут обеспечить завод металлом для получения кг сплава
10/(x-a) - 1 <= 0 (10 - (x-a)) / (x-a) <= 0 дробь меньше нуля, когда числитель и знаменатель имеют разные знаки... x-a < 0 10 - (x-a) >= 0 или x-a > 0 10 - (x-a) <= 0
решение первой системы: x-a < 0 x-a <= 10 x-a < 0 решение второй системы: x-a > 0 x-a >= 10 x-a >= 10 решение первого неравенства: x < a или x >= a+10 (два луча))) второе неравенство равносильно двойному неравенству: -4 <= x-3a <= 4 3a-4 <= x <= 4+3a (один отрезок))) если отметить все значения на числовой прямой, то станет очевидно, что расстояние между концами первых двух лучей 10 единиц, длина отрезка-решения второго неравенства = (4+3a)-(3a-4) = 8 единиц система будет иметь единственное решение, когда эти лучи и отрезок имеют только одну общую точку... это условие: 3a+4 = 10+a (правый край отрезка = левому краю луча (правого))) 2a = 6 a = 3
Решение: an=a1+d(n-1)
a3=-0.8+2*4=7.2
a7=-0.8+6*4=23.2
a24=-0.8+23*4=91.2