Пусть х дм - длина одного катета, тогда
(23+х) дм - длина другого катета.
37 дм - гипотенуза
ОДЗ: 0<x<37
Согласно теореме Пифагора для прямоугольного треугольника сумма квадратов катетов равна квадрату гипотенузы, получаем уравнение:
x² + (23+x)² = 37²
x² + 529 + 46x + x² = 1369
2x²+46x+529-1369 = 0
2x²+46x-840 = 0 |:2
x²+23x-420 = 0
D = 23² - 4·1·(-420) = 529+1680 = 2209 = 47²
x₁ = (-23-47)/2 = -60/2 = - 30 < 0 не удовлетворяет ОДЗ.
x₂ = (-23+47)/2 = 24/2 = 12 удовлетворяет ОДЗ.
Получаем:
12 дм - длина одного катета;
23+12 =35 дм - длина другого катета;
37 дм - гипотенуза
Найдем периметр прямоугольного треугольника:
12 + 35 + 37 = 84 (дм)
ответ: 84 дм
на 3: 12, 30, 60, 63, 75
на 5: 25, 30, 35, 60, 75
на 7: 35, 49, 56, 63, 77
на 15: 30, 60, 75
б) Существуют ли такие десять различных двузначных чисел, среди которых ровно 6 делятся на 3, ровно 7 делятся на 5, ровно 8 делятся на 7?
ответ: НЕТ
двузначные числа кратные 3 и 5: 15, 30, 45, 60, 70, 75, 90.
двузначные числа кратные 3 и 7: 21,42,63,70, 84
двузначные числа кратные 5 и 7: 35, 70
Чисел кратных 7 ровно 8 из 10, из них только два (35,75) тоже кратны 5, значит делится на 5 должны ещё пять чисел (ровно 7 делятся на 5), что невозможно, поскольку из 10 остаётся лишь два числа (остальные 8 должны быть кратны 7).