Объяснение:
(n-2)/(n-3)= (n-2-1+1)/(n-3)= (n-3+1)/(n-3)=((n-3)/(n-3))+(1/(n-3))
=1+(1/(n-3))
(n-2)/(n-3)= 1+(1/(n-3))
для того чтобы это выражение было целым числом
надо чтобы 1/(n-3) было целым числом
рассмотрим возможные случаи
1) при n≤2 значение 1/(n-3) будет дробным числом <1
2) при n=3 дробь не существует
при n>4 значение 1/(n-3) будет дробным числом >1
3) остается n=2 и n=4
при n=2 (n-2)/(n-3)=(2-2)/(2-3)=0 значение дроби целое число
при n=4 (4-2)/(4-3)=2 значение дроби целое число
=>
Сумма всех целых чисел n , для которых дробь n-2/n-3 является целым числом 2+4=6
у/5.
Объяснение:
Упростите выражение:
(x+4)/(x-3) * (3x-9)/(x²+8x+16) : 15/(xy+4y)=
1)(x+4)/(x-3) * (3x-9)/(x²+8x+16)=
В числителе второй дроби вынести 3 за скобки, в знаменателе второй дроби квадрат суммы, свернуть:
=(x+4)/(x-3) * [3(x-3)]/(x+4)²=
Чтобы умножить дробь на дробь, нужно числитель первой дроби умножить на числитель второй, а знаменатель первой дроби умножить на знаменатель второй:
=[(x+4)*3(x-3)] / [(x-3)*(x+4)(x+4)]=
сокращение (x+4) и (x+4) на (x+4), (x-3) и (x-3) на (x-3):
=3/(x+4);
2)3/(x+4) : 15/(xy+4y)=
Чтобы разделить дробь на дробь, нужно числитель первой дроби умножить на знаменатель второй дроби, а знаменатель первой умножить на числитель второй дроби:
=[3*у(x+4)] / [(x+4)*15]=
сокращение (x+4) и (x+4) на (x+4), 3 и 15 на 3:
=у/5.
7х-11=-12+4х
Переносим все значения с х в одну сторону, без х в другую
7х-4х=-12+11(ЗНАКИ МЕНЯЮТСЯ, Т.К. ЗНАЧЕНИЕ ПЕРЕБЕГАЕТ ЧЕРЕЗ РАВНО- "=" ВСЕГДА МЕНЯЕТ ЗНАК)
3х=-1
х=-1/3