Берем первое выражение x6+x5+2x4+2x3+4x2+4x=0 выносим х в третьей степени за скобки х3(х3+х2+2х+2)=0 х3=0 либо (х3+х2+2х+2)=0 х=0 решим получившиеся уравнение х3+х2+2х+2=0 (далее способом группировки,разбиваем многочлен на множители. (х3+2х) +(х2+2)=0) х(х2+2) + 1(х2+2)=0 (х+1)*(х2+2)=0 х+1=0 либо х2+2=0 х= -1 х2=-2 (решений нет) теперь берем второе выражение 3x4+3x3+6x2+6x=0выносим за скобки 3х3х(х3+х2+2х+2)=03х=0 либо х3+х2+2х+2 =0х=0решим получившиеся уравнение х3+х2+2х+2 =0используя способ группировки,мы разбиваем многочлен на множителих(х2+2)+1(х2+2)=0(х+1)*(х2+2)=0х+1=0 либо х2+2=0х= -1 х2= -2(решений нет)общие корни уравнений : 0 и -1.ответ : 0,-1
Надо помнить формулу, что 1+tg^2x =1/cos^2x, ну тогда и делаем замену в левой части уравнения и получаем: 2*cos^2x=1+sinx помним, что Cos^2 x=1-sin^2x, опять замену делаем 2*(1-sin^2x)=1+sinx открываем скобочки, все переносим влево: 2-2sin^2x=1+sinx 2-2sin^2x-1-sinx=0 -2sin^2x-sinx+1=0 делаем замену переменной: sinx=t -2t^2-t+1=0 имеем квадратное уравнение, решаем через дискриминант: D=1-4*(-2)*1=9=3^2 t(1)=(1-3)/-4=-2/-4=0.5 t(2)=(1+3)/-4=-1
совокупность уравнений решаем: первое из которых выглядит как sin x=0.5 , x=П/6+2Пn, х=5П/6+2Пn второе из которых выглядит как sin x=-1 , x=-П/6+2Пn
ну с поиском корней на отрезке, думаю, справишься, там либо через синусоиду искать, либо через окружность
Преобразуем выражение по правилам действий со степенями:
Умножение числа 125 на число 10 в любой степени прибавит только нули. Поэтому сумма цифр искомого числа равна 1+2+5=8.
ответ: сумма цифр равна восьми.
P. S. Если что-либо оказалось непонятным, спрашивайте.