1. Область определения: D(y)= X≠ 3 , X∈(-∞;3)∪(3;+∞). Не допускаем деления на 0 в знаменателе.
2.Поведение на бесконечности. Y(-∞)= -∞, Y(+∞)= -∞ - горизонтальная асимптота - y = 0.
3. Разрыв II-го рода при Х = 3.
Вертикальных асимптота - Х = 3.
4. Нули функции, пересечение с осью ОХ.
x-3 = 2. x = -2/3 .
5. Интервалы знакопостоянства.
Отрицательна: Y(x)<0 - X∈(-∞;3). Положительна: Y>0 - X∈(3;+∞;)
6. Проверка на чётность. Есть сдвиг по оси ОХ - нет симметрии ни осевой ни центральной.
Функция ни чётная, ни нечётная: Y(-x) ≠ -Y(x) , Y(-x)≠ Y(x).
7. Поиск экстремумов по первой производной.
y'(x) = - 2/(x-3)² = 0. Корней - нет
8. Локальный максимум - нет.
9. Интервалы монотонности.
Убывает: X∈(-∞;3)∪(3;+∞) - везде, где существует.
10. Поиск перегибов по второй производной.
y"(x) = 4/(x-3)³ = 0
Точки перегиба нет, кроме разрыва при Х = 0.
11. Вогнутая - "ложка"- X∈(3;+∞;), выпуклая - "горка" - X∈(-∞;3); 12. Наклонная асимптота.
k = lim(+∞) Y(х)/x = 2/(x²-3*х) = 0 - наклон. y = 0 - горизонтальная асимптота.
13. Область значений. E(y) - y∈(-∞;+∞).
14. График функции на рисунке в приложении.
㏒₂х+㏒₂у=2; ху=2²=4, х и у положительны
2в степени (х-у)=(1/4)⁻¹,⁵
1/4 в степени -1.5=3, если равны основания, то равны и показатели степени. поэтому
х-у=3
ху=4, х=у+3, подставим во второе уравнение. у*(у+3)=4, у²+3у-4=0, по теореме, обратной теореме Виета у=1, у=-4 - не подходит, т.к. не попадает в ОДЗ, значит, у=1, тогда х=1+3=4
ответ (4;1)
9. Дана правильная четырехугольная пирамида, значит, основание высоты- точка пересечения диагоналей квадрата, который лежит в основании пирамиды и половина диагонали находим по теореме ПИфагора, т.е. как √(5²-3²)=4/м/. Тогда диагональ равна 2*4=8/м/.
Найдем площадь основания по формуле д²/2=8²/2=32/м²/. Объем пирамиды ищем по формуле v=sосн.h/3=32*3/3=32/м³/
10.Треугольник, образованный образующими конуса равнобедренный, в нем высота, проведенная к основанию, (которое являеся диаметром круга, лежащего в основании конуса), является и биссектрисой, и медианой. Раз биссектрисой, то высота лежит треугольника - осевого сечения конуса- равна половине образующей, т.е. 6см, (т.к. сумма острых углов в прямоугольном треугольнике равна 90град., и тогда высота лежит против угла в 30 град.) радиус основания конуса равен произведению образующей на косинус угла в 30 град., т.е.
12*√3/2=6√3/см/, а объем конуса v=ПR²h/3=П6²*3*6/3=216П/см³/