√4.5 * √72 = √4.5 *√ 9*8 = √4.5 * 3 * √8 = √4.5 * 3 * √4*2 = √4.5 * 3 * 2 * √2 = √4.5 * 6 * √2 = √4.5*√2 * 6 = √9 * 6 = 3*6 = 18 т.к выглядит по татарски , напишу письменно корень их 4,5 умножим на корень из 72 , разложим 72 на множители- 9 и 8( что бы корень исчез) , корень из 9 - это 3 , следовательно получаем: корень из √4.5 * 3 * √8 . 8 тоже можно разложить на множители - это 4*2 а корень из 4 - это 2, получаем корень из 4,5, умноженное на 3, умноженное на на 2 и ещё раз умноженное на корень из двух 3 и 2 перемножаем , получаем 6. и теперь у нас остаётся корень из 4,5 и корень из двух их мы тоже перемножим , получим корень из 9 а корень из 9 - это 3 получается что 6*3=18 ОТВЕТ : 18 спрашивай, если что не понятно
Попробую решить) Итак, при х = -4,5 неравенство x^2+9x+a>0 - не верно. Значит, при х = -4,5 верно следующее неравенство: x^2+9x+a<0 ( поменяли знак неравенства на противоположный). Подставим "-4,5" вместо икса и получим: (-4,5)^2+9*(-4,5)+a<0 20,25-40,5+a<0 -20,25+a<0 a<20,25 - при этих "a" неравенство x^2+9x+a<0 - ВЕРНО,а неравенство x^2+9x+a>0 - НЕ ВЕРНО. И верным оно будет при a>20,25 ( поменяли знак неравенства на противоположный). Проверим: подставим в формулу неравенства любое значение "a", которое больше 20,25( например,21). Далее,чтобы решить неравенство, нам надо найти корни уравнения x^2+9x+21=0, но т.к. дискриминант <0, то решением неравенства x^2+9x+21>0 будут все иксы. ответ: a> 20,25.
(1/17+1/4)/1/68=21