М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Aлинa11
Aлинa11
08.06.2020 01:30 •  Алгебра

Не могли вы мне ,заранее - запишите уравнение касательной к графику функции y = x^3 - 2x , проведенной параллельно прямой y = -2x-1 . постройте график.

👇
Ответ:
MariKharlova
MariKharlova
08.06.2020
Если касательная параллельна прямой у=-2х-1,то коэффициент касательной равен -2, то есть yf`(x0)=-2
f`(x)=3x²-2=-2
3x²=0
x0=0
f(0)=0
Y=0-2(x-0)=-2x-уравнение касательной
4,8(35 оценок)
Ответ:
frostdog0609
frostdog0609
08.06.2020
Запишите уравнение касательной к графику функции y = x^3 - 2x , проведенной параллельно прямой y = -2x-1 . 

уравнение касательной к графику функции y=f(x) - 
y=f'(x0) (x-x0)+f(x0) эта прямая параллельно прямой y = -2x-1⇔ f'(x0) =-2,  ⇒  найдем x0:   y' = 2(x0)^2 - 2=-2 ⇔ x0=0,  y(x0) =f(x0)= 0^3 - 2·0=0 ,
 
т.о 
уравнение касательной примет вид:
y=-2 (x-0)+0  y=-2x

прямую проходящую через начало координат рисовать просто...по двум точкам  A(0,0) B(1;-2)  ( y=-2x)
4,4(24 оценок)
Открыть все ответы
Ответ:
Nikita20053103
Nikita20053103
08.06.2020
Если (х,у) - какое-то решение системы, то т.к. х встречается только в квадрате, то (-х, у) - тоже решение,  Значит количество решений системы всегда четное, за исключением случая, когда есть решение с х=0. В этом случае y=A, и A=√3 или A=-√3.
1) Если A=√3, то y=x²+√3,
(x²+√3)²+x²=3
x⁴+(2√3+1)x²=0
x²(x²+2√3+1)=0
x=0; x²+2√3+1=0 действительных корней не имеет.
Итак, в этом случае 1 решение.

2) Если A=-√3, то y=x²-√3,
(x²-√3)²+x²=3
x⁴+(-2√3+1)x²=0
x²(x²-2√3+1)=0
x=0; x²=2√3-1>0 - дает еще два решения.
Итак, в этом случае 3 решения.

Все это можно понять и из графиков. Первое уравнение задает окружность радиусом √3, а второе - параболу y=x² сдвинутую на А по оси Оу. В силу симметрии графиков относительно оси Оу, понятно что всегда будет четное количество решений (либо не будет вообще). 1 решение или 3 возможны только в случае, когда вершина параболы y=x²+A совпадает с верхней или нижней точкой окружности, т.е. при A=√3 или А=-√3. В первом случае, очевидно одно решение. А во втором не так очевидно, что 3 решения, но это проверяется, как я сделал выше. 
4,4(38 оценок)
Ответ:
bulatdikhin
bulatdikhin
08.06.2020
Если (х,у) - какое-то решение системы, то т.к. х встречается только в квадрате, то (-х, у) - тоже решение,  Значит количество решений системы всегда четное, за исключением случая, когда есть решение с х=0. В этом случае y=A, и A=√3 или A=-√3.
1) Если A=√3, то y=x²+√3,
(x²+√3)²+x²=3
x⁴+(2√3+1)x²=0
x²(x²+2√3+1)=0
x=0; x²+2√3+1=0 действительных корней не имеет.
Итак, в этом случае 1 решение.

2) Если A=-√3, то y=x²-√3,
(x²-√3)²+x²=3
x⁴+(-2√3+1)x²=0
x²(x²-2√3+1)=0
x=0; x²=2√3-1>0 - дает еще два решения.
Итак, в этом случае 3 решения.

Все это можно понять и из графиков. Первое уравнение задает окружность радиусом √3, а второе - параболу y=x² сдвинутую на А по оси Оу. В силу симметрии графиков относительно оси Оу, понятно что всегда будет четное количество решений (либо не будет вообще). 1 решение или 3 возможны только в случае, когда вершина параболы y=x²+A совпадает с верхней или нижней точкой окружности, т.е. при A=√3 или А=-√3. В первом случае, очевидно одно решение. А во втором не так очевидно, что 3 решения, но это проверяется, как я сделал выше. 
4,4(98 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ