6>5. Представим, что 6=а, 5=в, тогда получим неравенство вида а>в. По свойству числовых неравенств если а>в, то в<а=>5<6. Если а>в и с -- любое число, то а+с>в+с. Пусть с=1, тогда 6+1>5+1=>7>6. Если с -- положительное число, то ас>вс. 6*1>5*1=>6>5. Если с -- отрицательное, то ас<вс. 6*(-1)<5*(-1)=>-6<-5. Если а>в и а и в>0, то 1/а<1/в, т.к, делим на большее кол-во частей. Если а>в и с>д, то а+с>в+д. Пусть с=4 и д=3, тогда 6+4>5+3=>10>8. Если а, в, с и д>0, то ас>вд. 6*4>5*3=>24>15. Если а>в и н -- натульральное число, то а^н>в^н. Пусть н=2, тогда 6^2>5^2=>36>25. а>в, когда а-в>0. 6-5=1>0.
1) по теореме косинусов имеем: a² = b² + c² - 2bc cos a = 25 - 24 cos 135° = 25 + 12√2 a = √(25 + 12√2) по теореме синусов, a / sin a = b / sin b sin b = sin a · b / a = √2 / 2 · 3 / √(25 + 12√2) = 3 / √(50 + 24√2) ∠b = arcsin(3 / √(50 + 24√2)) ∠c = 180° - 135° - ∠b = 45° - arcsin(3 / √(50 + 24√2)) 2) ∠a = 180° - ∠b - ∠c = 65° по теореме синусов b / sin b = a / sin a b = a sin b / sin a = 24.6 · √2 / 2 / (sin 65°) = 123√2 / (10 sin 65°) по теореме синусов c / sin c = a / sin a c = a sin c / sin a = 24.6 ·sin 70° / sin 65°
Проведем отрезки OB и OC, как показано на рисунке. Расстоянием от точки до прямой является длина перпендикуляра, проведенного к прямой. Поэтому, OE перпендикулярен AB, а OF перпендикулярен CD. Точки E и F делят свои хорды пополам (по свойству хорды) Получается, что треугольники OEB и OCF - прямоугольные, EB=AB/2 и CF=CD/2. По теореме Пифагора: OB2=OE2+EB2 OB2=242+(20/2)2 OB2=576+100=676 OB=26 OB=OC=26 (т.к. OB и OC - радиусы окружности) По теореме Пифагора: OC2=CF2+FO2 OC2=(CD/2)2+FO2 262=(CD/2)2+102 676=(CD/2)2+100 (CD/2)2=576 CD/2=24 CD=48 ответ: CD=48
3x>6
X>2
X€(2;+бес)
2)5x-10<5
5x<15
X<3
X€(-бес;3)
3)2x-1>0
X>1/2
X€(1/2;+бес)
4)x+50<0
X<-50
X€(-50;+бес)
5)
5x<=1
X<=0.2
X€(-бес;0.2]
6)
8x+2>=58
8x>=56
X>=7
X€[7;+бес)
Бес. - бесконечность
€-знак принадлежности
>= или <= меньше(больше) или равно