1) 7 легковых, 15 грузовых машин
Объяснение:
Задача 1.
Мы знаем что общее количество отремонтированных машин составляет 22.
Возьмём количество грузовых машин как х. А количество легковых как (х-8). С этих данных составим уравнение:
х + х-8 = 22,
2х-8=22,
2х=22+8,
2х=30,
х=30:2,
х=15.
15 - это количество грузовых машин.
теперь 15 - 8 = 7 машин - это легковые машины.
Задача 2.
Нам известно, что общее количество выпущенных изделий равно 1315. Изделия в январе обозначим через х. А изделия в феврале обозначим через (х+165). По этим данным составим уравнение:
х + х+165 = 1315,
2х+165=1315,
2х=1315-165,
2х=1150,
х=1150:2,
х=575.
575 - это количество изделий выпущенных в январе.
тогда 575+165= 740. это количество изделий выпущенных в феврале.
В январе - 572
В феврале - 740.
Будем считать, что задана парабола y = ax² + bx + 7.
Решение упрощается тем, что задана ось параболы х = -4.
Поэтому можно увязать зависимость а и b по формуле вершины параболы х0 = -b/2a.
Так как вершина параболы лежит на её оси, то её абсцисса равна -4.
-4 = -b/2a,
-8a = -b,
b = 8a.
Заданная точка А находится между её осью и осью Оу.
Кроме того, точка пересечения оси Оу находится ниже точки А, поэтому заданная парабола имеет ветви, направленные вниз и коэффициент а имеет знак минус.
Получаем уравнение с одной переменной.
Подставляем координаты точки А.
19 = -a*(-2)² - 8a*(-2) + 7.
-4a + 16a = 19 - 7,
12a = 12,
a = 12/12 = 1.
ответ: уравнение параболы y = -x² - 8x + 7.