(x-1)(x+5)>0 Находим точки, в которых неравенство равно нулю: x-1=0 x=1 x+5=0 x=-5 Наносим на прямую (-∞;+∞) эти точки: -∞-51+∞ Получаем три диапазона: (-∞;-5) (-5;1) (1;+∞) Для того, чтобы определить знак диапазона достаточно подставить хотя бы одно число из этого диапазона: (-∞;-5) Например, подставим число -7: (-7-1)(-7+5)=-8*(-2)=16>0 ⇒ + (-5;1) Подставим число этого диапазона 0: (0-1)(0+5)=-1*5=-5<0 ⇒ - (1;+∞) Подставим 2: (2-1)(2+5)=1*7=7>0 ⇒ + -∞+-5-1++∞ ⇒ x∈(-∞;-5)U(1;+∞).
Чертим координатную плоскость отмечаем точку О, стрелками положительное направление: вправо и вверх, подписываем оси: вправо - ось х и вверх - ось у отмечаем единичные отрезки по каждой из осей в 1 клетку.
Отмечаем данную точку А(-3; 3) Чертим прямую х=-2, для этого отмечаем две точки, например В(-2; 2) и С(-2; 4) . Из точки А проводим перпендикуляр АН к прямой с угольника и продолжаем его дальше прямой; отмеряем на продолжении перпендикуляра расстояние, равное АН и ставим точку Д. Находим координаты точки Д. Получаем Д(-1; 3) - симметрична А относительно прямой х=-2