Пусть за х дней может закончить Катя, тогда еѐ производительность равна / х .
А за у дней может закончить Алиса, тогда еѐ производительность равна / у .
Т.к. они могут напечатать курсовую работу за 6 дней,
то /х + /у = 1/
Если сначала % = / части курсовой напечатает Катя,
а затем завершит работу Алиса, то Алисе остается
% = / части курсовой.
Вся курсовая работа будет выполнена за 12 дней т.е.
( /) х + (/ ) у = .
Решим систему:
/х + /у = / ,
(/) х + (/ ) у = .
+ = ,
+ = ;
у = − , ;
+ * ( − , ) = *( − , )
у = − , ;
, ² − + = ;
у = − , ;
² − + = ;
² − + = ;
= , у =
или = , у = . - не подходит, т.к. Катя печатает быстрее, чем Алиса.
Значит, Катя может напечатать курсовую работу за 10 дней.
ответ. за 10 дней
3 * а^2 - а/4 = 3 * (1/3)^2 - (1/3) / 4 = 3 * (1/3^2) - (1/3) / 4 = 3 * 1/9 - (1/3) / 4 =
= (1/3) - (1/3) / 4 = 1/3 - 1/3 * 1/4 = 1/3 - 1/12 = 4/12 - 1/12 = 3/12 = 1/4.
ответ: значение выражения 3 * а^2 - а/4 при а = 1/3 будет равно 1/4.
б) (2a-a²) - (a²+2a) = 2a - a² - a² - 2a = - 2а²