При решении этих неравенств надо понимать, что графиком квадратичной функции является парабола. Ветвями вверх или вниз. Если хорошо понимать, как проходит парабола,легко поставить знаки квадратичной функции и потом ответить на вопрос задания.
а) х² - 6х +8 > 0
Корни 2 и 4
-∞ (2) (4) +∞
+ - + знаки квадратичной функции
решение неравенства
ответ: х∈(-∞;2)∪(5;+∞)
б) х² + 6х +8 < 0
корни -2 и -4
-∞ (-4) (-2) +∞
+ - + знаки квадратичной функции
решение неравенства
ответ: х∈(-4; -2)
в) -х² -2х +15 ≤ 0
корни -5 и 3
-∞ [-5] [3] +∞
- + - знаки квадратичной функции
решение неравенства
ответ: х∈ (-∞; -5]∪ [3; + ∞)
г) -5х² -11х -6 ≥ 0
корни -1 и -1,2
-∞ [-1,2] [-1] +∞
- + - знаки квадратичной функции
решение неравенства
ответ: х ∈ [-1,2; -1]
д) 9x² -12x +4 > 0
D = 0 корень один
х = 2/3
-∞ (-2/3) +∞
+ + знаки квадратичной функции
решение неравенства
ответ: х∈ (-∞; 2/3)∪ (2/3; +∞)
е) 4х² -12х +9 ≤ 0
D = 0, корень один х = 3/2
-∞ [3/2] +∞
+ + знаки квадратичной функции
∅
=a²+ab+ab+b²+2a-a+2b-b-2=
=(a²+ab-a)+(ab+b²-b)+(2a+2b-2)=
=a(a+b-1)+b(a+b-1)+2(a+b-1)=
=(a+b-1)(a+b+2)
или так
a²+2ab+b²+a+b-2=
=(a²+2a+b²)+(a+b)-2=
=(a+b)²+(a+b)-2=
Замена: х=a+b
=x²+x-2=(x-1)(x+2)
корни найдены по теореме Виета
Обратная замена: x=a+b
=(a+b-1)(a+b+2)