М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
KIRILL1231321312
KIRILL1231321312
24.05.2021 09:46 •  Алгебра

Сравните в корне из 23- в корне из 11 и в корне из 22- в корне из 10

👇
Ответ:
polina1362
polina1362
24.05.2021
Корень из 23 больше, чем корень из 11. Корень из 22 больше, чем корень из 10
4,4(22 оценок)
Открыть все ответы
Ответ:
gfitgfbjgffj
gfitgfbjgffj
24.05.2021
1) x²+5x=0
D=25-0=25
x1= -5+√25 / 2*5= -5+5 / 2= 0/2=0
x2= -5-√25 / 5*2= -5-5 / 2=-10/2=-5

2) x²-4=0
D= 0-16=16
x1= 0+√16 / 2=4/2=2
x2=0-√16 / 2= -4/2=-2

3) 2x²+3x-5=0
D= 9+40=49
x1= -3+√49 / 2*2= -3+7 / 4= 4/4=1
x2= -3-√49 / 4= -3-7 / 4= -10/4= -5/2=-2,5

4) 2x²-3=0
D=0+24=24
x1= 3+√24 / 2*2= 3+2√6 / 4
x2= 3-√24 / 4= 3-2√6 / 4

5) x²+3x+2=0
D=9-8=1
x1= -3+√1 / 2= -3+1 / 2=-2/2=-1
x2= -3-√1 / 2= -3-1 / 2=-4/2=-2

6) x²+x-6=0
D=1+24=25
x1= -1+√25 / 2= -1+5 / 2=4/2=2
x2= -1-√25 / 2= -1-5 / 2=-6/2=-3

7)x²+4x+4=0
D=16-16=0
x= -4/2=-2

8) 3x²+8x-3=0
D= 64+36=100
x1= -8+√100 / 2*3= -8+10 / 6= 2/6=1/3
x2= -8-√100 / 6= -8-10 / 6= -18/6=-3

9) 6a²-6a+2=0
D=36-48=-8
ответ: нет корней,потому что D<0

10) x²+10x=0
D= 100-0= 100
x1= -10+√100 / 2= -10+10 / 2= 0/2=0
x2= -10-√100 / 2= -10-10 / 2= -20/2= -10

11)-x²+9=0
x²-9=0
D=0+36=36
x1= 0-√36 / 2= -6/2=-3
x2= 0+√36 / 2= 6/2=3
4,7(70 оценок)
Ответ:
mikhuil
mikhuil
24.05.2021

1.D(F)=[0;+∞)

1.Е(F)=[0;+∞)

3. Нули функции x-√x=0;  √х*(√x-1)=0; x=0 ;x=1.

4. Промежутки знакопостоянства при х ∈(0;1)  F(x)<0; при х ∈(1;+∞)  F(x)>0

5. Функция непериодическая.

6. Функция не является ни четной, ни нечетной. т.к. область определения не симметрична относительно начала отсчета.

7. Асимтптоты. т.к. предел функции при х стремящемся к ±∞ равен ±∞, то горизонтальные асимптоты справа и слева отсутствуют. Вертикальных асимптот тоже нет. Функция в области определения непрерывна. Наклонные асимптоты ищем в виде у=кх+b, где к-предел отношения F(х)/x при х стремящемся к ∞, этот предел равен 1, а b = пределу (F(x)-kx) при х стремящемся к ∞, и он равен -∞. Поэтому наклонных асимптот нет.

8. Промежутки монотонности. Первая производная равна 1-1/(2√х)=(2√х-1)/(2√х), она равна нулю при х=1/4, и производная отрицательна при х∈(0;1/4) здесь функция убывает. и положительна при х∈(1/4;+∞) здесь функция возрастает.

9. Экстремумы. При переходе через точку х=1/4 производная меняет знак с минуса на плюс. х=1/4- точка минимума. Минимум равен 1/4-√1/4=-1/4

10. Вторая производная равна 1/(4х³/²) в области определения положительна, поэтому график вогнут. Точек перегиба нет.

График функции см. ниже.


х «Исследование функции методами дифференциального исчисления» Произвести полное исследование функци
4,5(87 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ