Если отбросить слово прямоугольной, то решаем так. Все боковые ребра пирамиды равны, т.е. вершина пирамиды равноотстоит от его вершин основания, а т.к. наклонные - боковые ребра пирамиды равны, то равны и проекции этой пирамиды, тогда основание высоты - это центр окружности, описанной около ее основания, т.е. точка пересечения диагоналей прямоугольника.
Диагонали прямоугольника равны. найдем одну из них, по Пифагору, т.е. √(24²+18²)=√(576+324)=√900=30/мм/, в точке пересечения диагонали делятся пополам, т.е. половина диагонали равна 30/2=15/мм/.
Найдем теперь высоту пирамиды из треугольника, в котором известна половина диагонали основания 15мм и боковое ребро =25 мм, высота равна h=√(25²-15²)=√(40*10)=20/мм/
площадь основания равна s=18*24=432/мм²/
Найдем объем пирамиды v=s*h/3=432*20/3=144*20=2880/мм³/
cos²x + sin²x ≡ 1,
cos²x ≡ 1 - sin²x,
2*(1-sin²x) - 3sinx = 1/2,
2 - 2sin²x - 3sinx = 1/2,
2sin²x + 3sinx + (1/2) - 2 = 0,
2sin²x + 3sinx - 1,5 = 0, домножим последнее уравнение на 2
4sin²x + 6sinx - 3 = 0,
делаем замену sinx = t,
4*t² + 6t - 3 = 0,
D = 6² - 4*(-3)*4 = 36 + 12*4 = 36+48 = 84 = 4*21,