Скорость грузовой машины - 40км/ч.
Выразим скорость грузовой машины через х. Тогда скорость легковой машины - 1,5х (км/ч). Сколько времени ехала грузовая машина? часов. А легковая, соответственно,
часов. Поскольку известно, что выехала она на 2 часа позже, а приехала на
часа раньше, значит, в целом она пробыла в пути на
часов меньше.
- разница во времени.
Составим уравнение:
.
Избавимся от знаменателей, умножив обе части на общий множитель 3х.
Получим: 800 = 1200 - 10х
10х=400
х=40.
А это и есть скорость грузовика
{x=6
y=2
z=5
Объяснение:
Метод Крамера:
Δ==2*(-3)*(-1)+1*2*3+(-3)*1*(-4)-(-3)*(-3)*3-1*1*(-1)-2*2*(-4)=14
Δx==(-1)*(-3)*(-1)+1*2*5-3*10*(-4)-(-3)*(-3)*5-1*10*(-1)+1*2*(-4)=84
Δy==2*10*(-1)+(-1)*2*3+(-3)*1*5-(-3)*10*3-(-1)*1*(-1)-2*2*5=28
Δz==2*(-3)*5+1*10*3+(-1)*(-4)*1-(-1)*(-3)*3-1*1*5-2*10*(-4)=70
x=Δx/Δ=84/14=6
y=Δy/Δ=28/14=2
z=Δz/Δ=70/14=5
Метод Гаусса
Делим первую строку на 0,5(r1/0.5)
Далее r3-3r1 и r2-r1
Следующая итерация r2/(-3.5)
cледующий шаг r1-0.5r2 И r3+5.5r2
Последний шаг r1+r3 r2+r3
{x=6 y=2 z=5
Матричный метод
A=
Δ==2*(-3)*(-1)+1*2*3+(-3)*1*(-4)-(-3)*(-3)*3-1*1*(-1)-2*2*(-4)=14
Находим миноры:
M11==11
M12==-7
М13==5
M21==-13
M22==7
M23==-11
M31==-7
M32==7
M33==-7
A11=11 A12=7 A13=5
A21=12 A22=7 A23=11
A31=-7 A32=-7 A33=-7
A*=
A*т=
A-1= A*т/Δ=
X=A-1*B
B=
X=*
=
=
=
.................................