Половину времени, затраченного на дорогу, автомобиль ехал со скоростью 60км/ч,а вторую половуну времени- со скоростью 46 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути.
Решение
Средня скорость движения равна среднему арифметическому всех скоростей в зависимости от пройденного времени. В нашем случае, т.к. время равно и каждое равно половине пройденного, тогда:
S1=V1*t1
S2=V2*t2
t1=t2=tобщ*1/2
S1+S2=Sобщ
V1*tобщ*1/2+V1*t*1/2=Sобщ
tобщ*1/2*(V1+V2)=Sобщ
Sобщ/tобщ=(V1+V2)*1/2=(60+46)*1/2=106*1/2=53 км/час
ответ: средняя скорость движения автомобиля равна 53 км/час
57
Объяснение:
Докажем, что среди написанных чисел есть одинаковые.
Действительно, если все написанные числа разные, то различных
попарных сумм должно быть не менее четырёх, например, суммы
одного числа с четырьмя остальными. Значит, среди попарных сумм
есть суммы двух одинаковых натуральных чисел. Такая сумма
должна быть чётной, в нашем списке это число 80. Отсюда следует,
что на доске есть число 40 и оно написано не меньше двух раз.
Пар равных чисел, отличных от 40, на доске быть не может, иначе
среди попарных сумм было бы ещё одно чётное число. Обозначим одно из трёх оставшихся чисел через х, тогда среди
попарных сумм есть число 40 , + х значит, х равно либо 97 40 57, − =
либо 63 40 23. − =
Наборы 40, 40, 40, 40, 57 и 40, 40, 40, 40, 23 нам не подходят, так как
в них всего две попарные суммы. Значит на доске написан набор 40,
40, 40, 57, 23. Таким образом, наибольшее число на доске — это 57.
кол-во все возможных 30
искомая вероятность 8:30=0,27