Попробуйте такое решение:1. Пусть координаты вектора "а" будут х_а и у_а, а координаты вектора 'b' - х_b и y_b соответственно.2. Используя координаты, можно составить три уравнения:- для длины вектора |a|: (х_а)²+(у_а)²=36 (по условию длина его 6);- для длины вектора |a+b|: (х_а+х_b)²+(y_a+y_b)²=121 (по условию его длина 11);- для длины вектора |a-b|: (x_a-x_b)²+(y_a-y_b)²=49 (по условию его длина равна 7).3. По трём уравнениям можно составить систему и решить её относительно [(x_b)²+(y_b)²]. Расчёты системы приведены во вложении (по возможности перепроверьте).ответ: 7.
1) Введем функцию: f(x)=(х∧2+2х+1)(х-3)(х+2)÷х∧2+2х-3, f(x)=0, (х∧2+2х+1)(х-3)(х+2)÷х∧2+2х-3=0 2) Найдем нули числителя и знаменателя: Числитель: -Все скобки приравниваем к нулю: х∧2+2х+1=0 D<0, f(x)>0 х-любое число x-3=0 x=3 x+2=0 x=-2 Расставляем полученные числа на числовую прямую, нам нужен промежуток с плюсом, т.к. в условии функция >0, получаем х принадлежит(-бесконечности; 2),(3; до +бесконечности), Знаменатель: х∧2+2х-3 не равно 0 D=16 x=-3 x=1 Так же на числовой прямой расставляем полученные корни, получаем х принадлежит (-бесконечности; -3),(1; + бесконечности) Сопоставляем полученные промежутки на общую числовую прямую, получаем конечный ответ х принадлежит (-бесконечности; -3),(3; + бесконечности)