угол 150 градусов, как легко заметить, = 90 + 60
=> задача построить угол в 60 градусов (предполагается, что прямой угол строить умеем...)
а угол в 60 градусов всегда в паре с углом в 30 градусов в любом прямоугольном треугольнике, т.е. если построим угол в 30 градусов, то угол в 60 градусов получится...
а угол в 30 градусов строится из соображания, что катет в прямоугольном треугольнике, лежащий против угла в 30 градусов, равен половине гипотенузы...
такая идея...
1. провести прямую
2. построить к ней _|_ (получили угол 90 градусов)
3. этот _|_ будет катетом, лежащим против угла в 30 градусов (т.е. угол в 60 градусов будет рядом с углом в 90 градусов) ---на _|_ отмечаем отрезок любой длины (катет), обозначаем точку А например...
4. из точки А строим _|_ к уже имеющемуся _}_-ру (получится прямая, параллельная первой прямой...)
5. раствором циркуля = катет*2 отмечаем гипотенузу прямоугольного треугольника (прямой угол в вершине А)
угол между построенной гипотенузой и первой прямой = 150 градусов
Пример 1. Пусть А – множество двузначных натуральных чисел, В – множество четных двузначных чисел. Верно ли, что В есть подмножество множества А?
ответ: Каждое четное двузначное число содержится в множестве А. Следовательно, В А.
Пример 2. Пусть А = {1; 2; 3}, В = {x | x N , х < 4}. Верно ли, что А = В.
ответ. Множество В состоит из натуральных чисел, меньших 4. Каждый элемент из А входит в В. Следовательно, А В. Но натуральных чисел, меньших 4, кроме чисел 1,2,3, нет. Следовательно, каждый элемент из В входит в А. Значит, В А. По определению, А = В.
Пример. 3. Дано множество А четных натуральных чисел и множество В натуральных чисел, кратных 4. В каком отношении включения находятся множества А и В? ответ проиллюстрировать диаграммой Эйлера-Венна.
Решение. Каждое натуральное число, кратное 4, является четным числом. Значит, B А. Но не каждое четное число обязано делится на 4. Например, 6 не делится 4, т.е. А В. Имеем диаграмму:
c = Q/m*∆t = 1200/0,12*(66-16) = 200 Дж/кг*°С.