В планиметрии все фигуры, которые рассматривались при доказательстве каждой теоремы или при решении задач, располагались на плоскости (на листе бумаги или на доске и т. д.). Таким образом, мы имели дело только с одной плоскостью, и все точки, линии, углы, вообще геометрические фигуры лежали только на ней.
В курсе стереометрии нам предстоит рассматривать такие случаи, когда не все точки, линии и углы данной или данных фигур будут располагаться на одной плоскости. Будем считать, например, поверхность стола моделью плоскости Р; возьмем куб и поставим его одной гранью на стол. Легко видеть, что в данном кубе:
1) имеются точки, ребра, углы, лежащие на данной плоскости Р (на столе);
2) имеются точки, которые находятся вне плоскости Р;
3) имеются ребра, пересекающие плоскость Р;
4) имеются углы, находящиеся вне плоскости Р;
5) имеются шесть граней, являющиеся моделями шести различных плоскостей.
Вывод. Плоскости могут вступать во взаимодействие с другими элементами фигур и друг с другом.
Отсюда вытекает необходимость изучать различные случаи комбинаций плоскостей между собой, комбинации плоскостей с линиями и другими геометрическими объектами. Это изучение является одной из задач курса стереометрии. В первую очередь надо выяснить основные свойства плоскостей по отношению друг к другу, к точкам и прямым.
1. Число делится на 12 без остатка, если оно делится на 3 и на 4. 2. Число делится на 4, если оно четное и если число составленное из последних 2-х цифр данного числа делится на 4. 3. Число делится на 3, если сумма цифр данного числа делится на 3.
Число не может заканчиваться цифрой 5, т.к. оно не будет делиться на 4. Цифру 5 вычеркиваем. Получили число 8453762, осталось вычеркнуть 2 цифры.
Допустим, число заканчивается цифрой 2, число составленное из последних 2-х цифр, должно делиться без остатка на 4. 62 на 4 не делится, а 72 - делится (72:4=18). Вычеркиваем цифру 6, получили число 845372, которое делится на 4.
Проверяем, делится ли оно на 3: 8+4+5+3+7+2=29. 29 на 3 не делится. Цифры 7 или 2 вычеркнуть нельзя, т.к. тогда число снова не будет делиться на 4. Осталось вычеркнуть одну из цифр 8, 4, 5 или 3. 29-8=21 - делится на 3 29-4=25 - не делится 29-5=24 - делится 29-3=26 - не делится. Можем вычеркнуть цифру 8, тогда получим число 45372, которое делится на 12. Или можем вычеркнуть цифру 5, получим число 84372, которое тоже делится на 12.
Т. к. в основании лежит прямоугольник, то там можно провести диагональ и рассмотреть полученный треугольник, по теореме Пифагора Ваша диагональ будет равна корень (12^2 + 5^2) = корень (144 + 25) = корень (169) = 13. А теперь совсем просто, рассматриваем треугольник, образованный диагональю призмы, диагональю основания и искомым боковым ребром, т. к. призма у Вас прямая, то этот треугольничек опять же будет прямоугольным, значит, в нем работает теорема Пифагора. Поэтому искомое ребро будет равно = корень (17^2-13^2) = корень (289-196)=корень (120)=2*корень (30)
В планиметрии все фигуры, которые рассматривались при доказательстве каждой теоремы или при решении задач, располагались на плоскости (на листе бумаги или на доске и т. д.). Таким образом, мы имели дело только с одной плоскостью, и все точки, линии, углы, вообще геометрические фигуры лежали только на ней.
В курсе стереометрии нам предстоит рассматривать такие случаи, когда не все точки, линии и углы данной или данных фигур будут располагаться на одной плоскости. Будем считать, например, поверхность стола моделью плоскости Р; возьмем куб и поставим его одной гранью на стол. Легко видеть, что в данном кубе:
1) имеются точки, ребра, углы, лежащие на данной плоскости Р (на столе);
2) имеются точки, которые находятся вне плоскости Р;
3) имеются ребра, пересекающие плоскость Р;
4) имеются углы, находящиеся вне плоскости Р;
5) имеются шесть граней, являющиеся моделями шести различных плоскостей.
Вывод. Плоскости могут вступать во взаимодействие с другими элементами фигур и друг с другом.
Отсюда вытекает необходимость изучать различные случаи комбинаций плоскостей между собой, комбинации плоскостей с линиями и другими геометрическими объектами. Это изучение является одной из задач курса стереометрии. В первую очередь надо выяснить основные свойства плоскостей по отношению друг к другу, к точкам и прямым.
Введем обозначения:
точки – А, В, С и т. д.
прямые – a, b, с и т. д. или (АВ, СD и т. д.)
плоскости – α, β, γ и т. д.