Шаг 1. Введите систему уравнений
Решим систему уравнений (Если соответствующая система уравнений действительно решаема).
Примеры
Система линейных уравнений с двумя неизвестными
x + y = 5
2x - 3y = 1
Система линейных ур-ний с тремя переменными
2*x = 2
5*y = 10
x + y + z = 3
Система дробно-рациональных уравнений
x + y = 3
1/x + 1/y = 2/5
Система четырёх уравнений
x1 + 2x2 + 3x3 - 2x4 = 1
2x1 - x2 - 2x3 - 3x4 = 2
3x1 + 2x2 - x3 + 2x4 = -5
2x1 - 3x2 + 2x3 + x4 = 11
Система линейных уравнений с четырьмя неизвестными
2x + 4y + 6z + 8v = 100
3x + 5y + 7z + 9v = 116
3x - 5y + 7z - 9v = -40
-2x + 4y - 6z + 8v = 36
Система трёх нелинейных ур-ний, содержащая квадрат и дробь
2/x = 11
x - 3*z^2 = 0
2/7*x + y - z = -3
Система двух ур-ний, содержащая куб (3-ю степень)
x = y^3
x*y = -5
Система ур-ний c квадратным корнем
x + y - sqrt(x*y) = 5
2*x*y = 3
Система тригонометрических ур-ний
x + y = 5*pi/2
sin(x) + cos(2y) = -1
Система показательных и логарифмических уравнений
y - log(x)/log(3) = 1
x^y = 3^12
Правила ввода выражений и функций
Выражения могут состоять из функций (обозначения даны в алфавитном порядке):
absolute(x)
Абсолютное значение x
(модуль x или |x|)
arccos(x)
Функция - арккосинус от x
arccosh(x)
Арккосинус гиперболический от x
arcsin(x)
Арксинус от x
arcsinh(x)
Арксинус гиперболический от x
arctg(x)
Функция - арктангенс от x
arctgh(x)
Арктангенс гиперболический от x
exp(x)
Функция - экспонента от x (что и e^x)
log(x) or ln(x)
Натуральный логарифм от x
(Чтобы получить log7(x), надо ввести log(x)/log(7) (или, например для log10(x)=log(x)/log(10))
sin(x)
Функция - Синус от x
cos(x)
Функция - Косинус от x
sinh(x)
Функция - Синус гиперболический от x
cosh(x)
Функция - Косинус гиперболический от x
sqrt(x)
Функция - квадратный корень из x
sqr(x) или x^2
Функция - Квадрат x
ctg(x)
Функция - Котангенс от x
arcctg(x)
Функция - Арккотангенс от x
arcctgh(x)
Функция - Гиперболический арккотангенс от x
tg(x)
Функция - Тангенс от x
tgh(x)
Функция - Тангенс гиперболический от x
cbrt(x)
Функция - кубический корень из x
gamma(x)
Гамма-функция
LambertW(x)
Функция Ламберта
x! или factorial(x)
Факториал от x
В выражениях можно применять следующие операции:
Действительные числа
вводить в виде 7.5, не 7,5
2*x
- умножение
3/x
- деление
x^3
- возведение в степень
x + 7
- сложение
x - 6
- вычитание
Другие функции:
asec(x)
Функция - арксеканс от x
acsc(x)
Функция - арккосеканс от x
sec(x)
Функция - секанс от x
csc(x)
Функция - косеканс от x
floor(x)
Функция - округление x в меньшую сторону (пример floor(4.5)==4.0)
ceiling(x)
Функция - округление x в большую сторону (пример ceiling(4.5)==5.0)
sign(x)
Функция - Знак x
erf(x)
Функция ошибок (или интеграл вероятности)
laplace(x)
Функция Лапласа
asech(x)
Функция - гиперболический арксеканс от x
csch(x)
Функция - гиперболический косеканс от x
sech(x)
Функция - гиперболический секанс от x
acsch(x)
Функция - гиперболический арккосеканс от x
Постоянные:
pi
Число "Пи", которое примерно равно ~3.14159..
e
Число e - основание натурального логарифма, примерно равно ~2,7183..
i
Комплексная единица
oo
Символ бесконечности - знак для бесконечности
Объяснение:
1. Сумма углов n-угольника равна 180°(n-2).
В случае 12-угольника сумма равна 1800 градусов. Т. к. он правильный, то углы его равны 1800/12=150 градусов. ответ : 150°
2. Площадь параллелограмма равна произведению его основания (a) на высоту (h):
S = a ⋅ h
144 см² = а ⋅ 16 см
a = 9 см
3.s = a * b / 2
a - катет b - катет
a = 12
b^2 = 13^2 - 12^2
b^2 = 169 - 144
b^2 = 25
b = 5
S = 5 * 12 / 2
S = 30
4. Площадь ромба можно найти по формуле S = 0,5d₁d₂, где d₁ и d₂ - его диагонали.
Т.к. ромб - это параллелограмм, у которого все стороны равны, то он обладает всеми свойствами параллелограмма, а именно: диагонали ромба точкой пересечения делятся пополам. Значит, полусумма диагоналей равна 28 : 2 = 14 (см).
Свойство ромба: диагонали ромба перпендикулярны. Значит, при пересечении диагоналей ромба получаются 4 прямоугольных треугольника, у которых катеты - половины диагоналей, а гипотенуза - сторона ромба.
Рассмотрим один из прямоугольных треугольников и, применив теорему Пифагора, найдем его катеты.
Пусть один из катетов х см, тогда второй будет равен (14 - х) см. Т.к. сторона ромба равна 10 см, то составим и решим уравнение:
х² + (14 - х)² = 10²,
х² + 196 - 28х + х² - 100 = 0,
2х² - 28х + 96 = 0,
х² - 14х + 48 = 0.
D = (-14)² - 4 · 1 · 48 = 196 - 192 = 4; √4 = 2
х₁ = (14 + 2)/(2 · 1) = 16/2 = 8, х₂ = (14 - 2)/(2 · 1) = 12/2 = 6
Если один из катетов равен 8 см, то второй будет равен 14 - 8 = 6 (см). Тогда диагонали ромба будут равны 16 см и 12 см, а площадь
S = 0,5 · 16 · 12 = 96 (см²)
Если один из катетов равен 6 см, то второй будет равен 14 - 6 = 8 (см). Тогда диагонали ромба будут равны 12 см и 16 см, а площадь
S = 0,5 · 12 · 16 = 96 (см²)
ответ: 96 см².
5.Обозначим трапецию АВСД. угол С=угол Д=90 градусов. так как в трапецию можно вписать окружность, то суммы противоположных сторон равны ВС+АД=СД+АВ.
проведём высоту ВК. Она разделила трапецию на прямоугольник ДСВК и прямоугольный треугольник АВК. Так как острый уголА = 45 градусов, то второй острый угол АВК = 90-45=45 градусов, значит треугольник равнобедренный, ВК=АК.
Пусть АК=х тогда и ВК=х, по т. Пифагора х²+х²=(12√2)², 2х²=144·2, х²=144, х=12, АК=12 см, ВК=12 см, тогда и СД=12 см.S(ABCD)=1/2·(АД+ВС)·ВК=1/2·(12+12√2)·12=72·(1+√2)
ответ на фото//////////////////