1) И прямая, и плоскость не имеют строгих определений в геометрии, а определяются через их свойства. У прямой нет "ширины" и "высоты", однако она простирается бесконечно в обе стороны. В строгом смысле слова, прямая - это одномерный аналог пространства. Плоскость имеет уже два бесконечных измерения - "длину" и "ширину", это двумерный аналог пространства.
2) а) нет, не могут. Плоскости либо параллельны (и тогда они не имеют общих точек), либо пересекаются по прямой (и тогда имеют бесконечное множество общих точек), либо совпадают (и тоже имеют бесконечное множество общих точек) б) нет в) да
Площадь произвольного четырёхугольника с диагоналями , и острым углом между ними (или их продолжениями), равна: площадь произвольного выпуклого четырёхугольника равна: , где , — длины диагоналей, a, b, c, d — длины сторон. : где p — полупериметр, а есть полусумма противоположных углов четырёхугольника. (какую именно пару противоположных углов взять роли не играет, так как если полусумма одной пары противоположных углов равна , то полусумма двух других углов будет и ). из этой формулы для вписанных 4-угольников следует формула брахмагупты. особые случаи[править | править исходный текст] если 4-угольник и вписан, и описан, то .если он описан, то площадь равна половине его периметра умноженная на радиус вписанной окружности | править исходный текст] в древности египтяне и некоторые другие народы использовали для определения площади четырёхугольника неверную формулу — произведение полусумм его противоположных сторон a, b, c, d[1]: . для непрямоугольных четырехугольников эта формула даёт завышенное значение площади. можно предположить, что она использовалась только для определения площади почти прямоугольных участков земли. при неточном измерении сторон прямоугольника эта формула позволяет повысить точность результата за счет усреднения исходных измерений.
2)
а) нет, не могут. Плоскости либо параллельны (и тогда они не имеют общих точек), либо пересекаются по прямой (и тогда имеют бесконечное множество общих точек), либо совпадают (и тоже имеют бесконечное множество общих точек)
б) нет
в) да