Дано: АВСД - трапеция, АВ=СД, АД=16√3, ∠А=∠Д=60°, АС⊥СД. Найти S(АВСД).
Решение: Проведем высоту СН, тогда S(АВСД)=(ВС+АД):2*СН.
Рассмотрим ΔАСД - прямоугольный, ∠Д=60°, тогда ∠САД=90-60=30°, а СД=1\2 АД=16√3:2=8√3.
Диагональ АС перпендикулярна к боковой стороне и делит угол А пополам, значит большее основание трапеции в два раза больше меньшего основания и её боковых сторон; и высота трапеции равна половине её диагонали.
СД=ВС=16√3:2=8√3;
АС²=(16√3)²-(8√3)²=768-192=576; АС=√576=24.
СН=1\2 АС=24:2=12.
S(АВСД)=(8√3+16√3):2*12=144√3 (ед²).
ответ: 144√3 ед²
Объяснение:
Синус острого угла прямоугольного треугольника равен отношению противолежащего катета к гипотенузе.
Косинус острого угла прямоугольного треугольника равен отношению прилежащего катета к гипотенузе.
Тангенс острого угла прямоугольного треугольника равен отношению противолежащего катета к прилежащему.
а) По теореме Пифагора:
AC = √(AB² - BC²) = √(17² - 8²) = √(289 - 64) = √225 = 15
sin∠A = BC / AB = 8/17 sin∠B = AC / AB = 15/17
cos∠A = AC / AB = 15/17 cos∠B = BC / AB = 8/17
tg∠A = BC / AC = 8/15 tg∠B = AC / BC = 15/8
б) По теореме Пифагора:
АВ = √(BC² + AC²) = √(21² + 20²) = √(441 + 400) = √841 = 29
sin∠A = BC / AB = 21/29 sin∠B = AC / AB = 20/29
cos∠A = AC / AB = 20/29 cos∠B = BC / AB = 21/29
tg∠A = BC / AC = 21/20 tg∠B = AC / BC = 20/21
в) По теореме Пифагора:
АВ = √(BC² + AC²) = √(1² + 2²) = √(1 + 4) = √5
sin∠A = BC / AB = 1/√5 sin∠B = AC / AB = 2/√5
cos∠A = AC / AB = 2/√5 cos∠B = BC / AB = 1/√5
tg∠A = BC / AC = 1/2 tg∠B = AC / BC = 2
г) По теореме Пифагора:
ВС = √(АВ² - AC²) = √(25² - 24²) = √(625 - 576) = √49 = 7
sin∠A = BC / AB = 7/25 sin∠B = AC / AB = 24/25
cos∠A = AC / AB = 24/25 cos∠B = BC / AB = 7/25
tg∠A = BC / AC = 7/24 tg∠B = AC / BC = 24/7
номер 3
1)угол ACD+ угол ACB =180 т.к они смежные, значит
угол ACD = 180- угол ACB = 180° -135° =45°
2)Рассмотрим треугольник ACD
по теореме о сумме углов треугольника:
угол ADC+угол DCA + угол CAD=180°, значит
угол CAD=180-угол ADC-угол DCA=180°-90°-45°=45°
3)угол DCA =угол CAD, значит треугольник ADC р.б поэтому AD=DC=8
4)S трADB =1/2 * a *h
S трADB=1/2 * AD * DB
SтрADB=1/2 * 8 * 12= 48
номер 6
1)треугольник ABC р.б т.к AB=BC
2)проведем медиану BD, медиана будет является также и высотой и биссектрой, значит AD=DC=4 и треугольники ABD и BDC прямоугольные (углы ADB и CDB равны 90°)
3)Рассмотрим треугольник ABD ,
по теореме Пифагора:
AD^2+BD^2=AB^2;
4^2+BD^2=10^2
16+BD^2=100
BD^2=84
BD=2√21
S трABC =1/2 * a *h
S трABC=1/2 * AC * DB
SтрABC =1/2 * 8 * 2√21= 8√21