Чертим пирамиду, диагонали основания (АС) и (ВD), высоту пирамиды SO. О - точка пересечения (АС) и (ВD) и центр квадрата АВСD. Треугольник АSC равен треугольнику АВС по трем сторонам. Значит треугольник ASC прямоугольный равнобедренный. АС=sqrt(2), AO=OC=OS=sqrt(2)/2. Все боковые грани пирамиды равносторонние треугольники со стороной 1. Апофемы пирамиды равны высотам этих треугольников и равны sqrt(3)/2. Проведем сечение через вершину пирамиды S и середины ребер AD (точка М) и ВС (точка N). Угол между АВ и плоскостью треугольника SAD равен углу между АВ и SM, значит равен углу между SM и NM или углу SMO. Из треугольника SOM получаем: cos(SMO)=(1/2)/sqrt(3)/2=1/sqrt(3)=sqrt(3)/3.
Если в данном прямоугольном треугольнике есть угол, равный 60-ти градусам, то в нём будет угол, равный 30-ти градусам(180-90-60=30). Как нам известно, в треугольниках напротив большего угла лежит бОльшая сторона этого самого треугольника, т.е. напротив угла в 30 градусов лежит меньший катет этого прямоугольного треугольника. А как нам всем известно, в прямоугольном треугольника сторона, лежащая напротив угла в 30 градусов, равна половине его гипотенузы. Т.е. разница между гипотенузой и меньшим катетом треугольника является просто разницей между гипотенузой и её половины. Значит сама гипотенуза равна 6-ти см(3*2=6), а меньший катет равен 3-ём см. ответ: гипотенуза=6 см, меньший катет=3 см.
Все боковые грани пирамиды равносторонние треугольники со стороной 1. Апофемы пирамиды равны высотам этих треугольников и равны sqrt(3)/2. Проведем сечение через вершину пирамиды S и середины ребер AD (точка М) и ВС (точка N). Угол между АВ и плоскостью треугольника SAD равен углу между АВ и SM, значит равен углу между SM и NM или углу SMO.
Из треугольника SOM получаем: cos(SMO)=(1/2)/sqrt(3)/2=1/sqrt(3)=sqrt(3)/3.