Дано: АВСD – ромб, BD пересекается с AC в точке O. Доказать: что BD перпендикулярна AC, и каждая диагональ делит соответствующие углы ромба пополам например, что угол ВАС = углу DАС. Доказательство: 1)АB = АD по определению ромба,поэтому треугольник ВАD равнобедренный; 2)так как ромб – параллелограмм, его диагональ пересекаются и делятся пополам; 3)АО – медиана равнобедренного ВАD; 4)АО – высота и биссектриса; 5)поэтому BD перпендикулярно AC и треугольник ВАС = треугольник DАС. Теорема доказана.
Внешний угол при вершине треугольника равен сумме внутренних углов треугольника, не смежных с ним. рассмотрим треугольник авс. угол свн - внешний угол при вершине, противоположной основанию. вм- биссектриса этого угла. она делит угол на два равных угла 1 и 2. так как внешний угол при в равен сумме внутренних углов а и с, а треугольник авс равнобедренный и углы при его основании равны между собой, все выделенные углы также равны между собой. углы под номером 1 -равные соответственные при прямых ас и вм и секущей ав углы под номером 2 - равные накрестлежащие при прямых ас и вм и секущей вс если при пересечении двух прямых третьей внутренние накрестлежащие углы равны, то прямые параллельны