Из любой точки, не лежащей на данной прямой, можно опустить на эту прямую перпендикуляр, и притом только один.
Доказательство: предположим, что на плоскости, которой принадлежат и прямая, и точка, таких перпендикуляров существует два. Поскольку точка вне прямой принадлежит обоим перпендикулярам, получаем треугольник с вершиной в этой точке и основанием, расположенном на прямой. Так как оба перпендикуляра составляют с прямой углы по 90° (углы при основании треугольника) плюс угол при вершине, то сумма внутренних углов такого треугольника получается больше 180°, - а это на плоскости осуществить невозможно. Следовательно, наше предположение о том, что через одну точку к данной прямой на плоскости можно провести больше одного перпендикуляра, - не верно и такой перпендикуляр существует только один. Теорема доказана.
PS построения не сложные. - прямая, 2 точки на ней, одна точка вне прямой и два отрезка, соединяющие эту точку с точками на прямой..))) Но, если очень надо, - то файлик внизу с рисунком..)) И еще. Упоминание о том, что все это происходит на плоскости, - желательно. Дело в том, что всем нам с детства знакомы меридианы на географической сетке Земного шара. Так вот каждый меридиан перпендикулярен экватору, и все меридианы сходятся аж в двух точках : в Северном и Южном полюсах
Для приведенного квадратного уравнения x^2 +px +q =0
Теорема Виета: x1+x2 = -p ; x1x2 =q
Формула корней: x1,2 = -p/2 +-√[(p/2)^2 -q]
--------------------------------------------------------------- -
По теореме котангенсов (p - полупериметр)
ctg(A/2) =(p-a)/r => p =r*ctg(A/2) +a
b+c =2p-a
S =pr =1/2 bc sinA => bc =2pr/sinA
Мы нашли сумму и произведение искомых величин (b, c).
По теореме Виета эти величины являются корнями квадратного уравнения
x^2 -(2p-a)x +2pr/sinA =0
По формуле корней квадратного уравнения
b,c =p -a/2 +-√[(p -a/2)^2 -2pr/sinA], где p =r*ctg(A/2) +a