Высота правильной четырёхугольной пирамиды равна 12 см, а сторона основания равна 24 см. Вычисли двугранный угол при основании.
——————————————————
Основание правильной четырехугольной пирамиды – квадрат.
Все боковые грани правильной пирамиды образуют с плоскостью основания равные углы, а высота проходит через центр основания, который является центром вписанной и описанной около основания окружностей.
Двугранный угол здесь образован радиусом вписанной окружности и апофемой, как отрезками. перпендикулярными ребру основания в одной точке (по т. о трех перпендикулярах).
Радиус вписанной в квадрат окружности равен половине его стороны.
r=24:2=12 (см)
Соединив основание апофемы с центром основания ( основанием высоты пирамиды), получим прямоугольный треугольник.
При этом катеты- высота пирамиды и половина стороны основания - равны 12 см.
Следовательно, треугольник - равнобедренный. Острые углы равнобедренного прямоугольного треугольника равны 45º.⇒ Искомый угол равен 45º.
а1) средняя линия равна (10 + 16) / 2 = 13
а2) сумма углов, прилежащих к боковой стороне трапеции равны 180°.
∠ а+ ∠ в=180°, а значит ∠ а=180°- ∠ в=180°-128°=52°
∠ с+ ∠ d=180°, а значит ∠ d=180°- ∠ c=180°-115°=65°
а3) так как угол а острый то ad> bc, тогда угол bkd = 180-akb=180-65=115. bcdk параллелограмм поэтому угол bcd=bkd=115
а4) проведем высоту из вершины в и с к основанию аd. высоты обозначим вн и см. отрезок нм=вс=5 см. т.к. трапеция равнобедренная, то ан=мd=(11-5)/2=3.
треугольник авн - прямоугольный, угол авн=30 градусов. катет, лежащий против угла 30 градусов (ан) равен половине гипотенузы, следовательно ав=3*2=6
так как ав=сd=6, то периметр трапеции равен: 5+11+6+6= 28
в1) периметр трапеции abcd равен ab+bc+be+bc+ae=32cм.
периметр треугольника abe равен ав+ве+ае. то есть разница одного и другого = 2*вс = 10. итак, периметр треугольника абе = 32 - 10 =22см
в2) рассмотрим треугольник acd - прямоугольный
угол сad=90 градусов, cda=90-60=30
cd=1/2ad=20: 2=10 см.
ab=cd, значит:
р=ad+bc+ab+cd=ad+bc+2cd
р=20+10+20= 50
ответ: 50