1)Прямая.-Через две точки можно провести одну прямую. Если две прямые пересекаются, то в единственной точке. Отрезок.-Часть прямой, ограниченная двумя точками. Луч.- Часть прямой, ограниченная одной точкой. Он бесконечен в одну любую сторону. 2)Угол. Бывает развёрнутым, прямым, острым, тупым и полным. Существуют смеднве углы, их сумма равна 180°. Все вертекальные углы равны (по градусной мере) . 3) Извини, я не знаю 4) Смежные углы. Сумма градумных мер равна 180°. Имеют одну общюю сторону. 5) Вертикальные угоы. Они равны между собой. Наприиер, если, угол 1 и угол 3 равны, и они находятся в одной плоскости то они вертикальные. 6) Перпендикулярными прямыми называются прямые пересикаемые под прямым углом 7) Паралельные прямые. Те прямые, которые наэодятся в одной плоскости и никогда не пересеикаются (не имеют точки пересичения) 8) Мы не проходили(
Нам дана прямая а и некоторая точка М, которая не лежит на этой прямой. Нам
нужно доказать, что все прямые, которые проходят через точку М и пересекают
прямую а лежат в некоторой единственной плоскости.
Мы знаем, что в силу 1 теоремы через прямую а и точку М проходит
единственная плоскость, обозначим через. Теперь возьмем произвольную
прямую, которая проходит через точку М и пересекает прямую а, например, в
точке А. Прямая МА лежит в плоскости α, потому что две ее точки М и А, лежат в
этой плоскости. Значит, и вся прямая лежит в плоскости, в силу 2 аксиомы.
Итак, мы взяли произвольную прямую, которая удовлетворяет условиям задачи,
и доказали, что она лежит в плоскости α. Значит, все прямые, проходящие через
точку М и пересекающие прямую а лежат в плоскости α, что и требовалось
доказать
Объяснение: