Задача 1.
S=kh
Соответственно k=S:h
60:12=5 - средняя линия трапеции
Задача 2.Площадь трапеции вычисляется по формуле a+b/2*h подставляем известные нам значения в формулу получаем 8*(8+b/2)=72
=128+b=144
b=16
Задача 3.
S=kh
Соответственно k=S:h
63:7=9 - средняя линия трапеции
Задача 4.
12*1+b/2=60
1+b=5
b=4
Задача 5
рассмотрим треугольник, образованный высотой, опущенной на основание и наклонной боковой стороной. Он прямоугольный и равнобедренный. Значит высота трапеции равна разнице между основаниями 9-5=4
площадь равна высоте умноженной на полусумму оснований 4 * (9+5)/2 =28
Геометрическая фигура, которая состоит из трех точек, не лежащих на одной прямой, и трех отрезков, попарно соединяющих эти точки, называется треугольник. Если стороны и углы одного треугольника соответственно равны сторонам и углам другого треугольника, то такие треугольники равны. Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны. Из точки, не лежащей на прямой, можно провести перпендикуляр (высоту) к прямой, и притом только один (одну). Медианой называется отрезок, соединяющий вершину треугольника с серединой противоположной стороны. Высотой треугольника называется перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противоположную сторону. Равнобедренным называется треугольник, у которого две стороны равны. Эти стороны называются боковыми, а третья сторона - основание. Треугольник, у которого все стороны равны, называется равносторонним. В равнобедренном треугольнике углы при основании равны. В равнобедренном треугольнике биссектриса, проведенная к основанию, является высотой и медианой.
AM - биссектриса ⇒ ∠BAC = 2∠BAM
BM - биссектриса ⇒ ∠ABC = 2∠ABM
ΔABM: ∠AMB = 109° ⇒
∠BAM + ∠ABM = 180° - ∠AMB = 180° - 109° = 71° ⇒
2(∠BAM + ∠ABM) = 2*71°
2∠BAM + 2∠ABM = 142°
∠BAC + ∠ABC = 142°
ΔABC: ∠C = 180° - (∠BAC + ∠ABC) = 180° - 142° = 38°
ответ: ∠C = 38°