Даны три точки. Известно, что AB = 3,7 см, AC = 5,6 см, BC= 1,9 см. Докажи методом от противного, что данные три точки лежат на одной прямой.
Объяснение: Предположим ,что точки A ,B и C не лежат на одной прямой ,т.е. ABC — ломаная , AB и BC — стороны или звенья ломаной. концы отрезков (точки A, B, C) — вершины ломаной.
тогда AB + BC должно получится больше AC ,но AB + BC=3,7 см+ 1,9 см = 5,6 см = AC . Получили противоречие ,значит предположение ( что данные три точки лежат на одной прямой) неверно . Они расположены на одной прямой.
1. Найти угол между векторами AС и АB.
*Можно искать не косинус угла, а найти длину вектора BC, тогда ΔABC -- равносторонний и углы равны по 60°.
2. Найти координаты центра сферы и длину ее радиуса. Найти значение m.
Приведём уравнение к общему виду (x - x₀)² + (y - y₀)² + (z - z₀)² = R²:
Тогда O (x₀; y₀; z₀) -- центр сферы, O (0; 1; -2),
R² = 16 ⇒ R = 4
Если точка принадлежит сфере, то подставив её координаты в уравнение, получится верное равенство. Подставим точки A и B в уравнение сферы:
3. Найти уравнение плоскости α.
Ax + By + Cy + D = 0 -- общее уравнение плоскости.
n = (A; B; C) -- вектор нормали ⇒ A = 1, B = 2, C = 3, тогда
Если точка принадлежит плоскости, то подставив её координаты в уравнение, получится верное равенство:
4. Найти общее уравнение прямой.
Общее уравнение прямой представляет собой систему уравнений двух пересекающихся плоскостей. Решение этой системы есть пересечение плоскостей, то есть прямая.
Зададим прямую параметрически:
Исключим параметр λ:
Последняя система -- это общее уравнение прямой.