1)Дано:тр.АВС,угол С=90 гр,СД-высота,угол АСД=4угламДСВ.
Найти:угол А,угол В.
Решение:
1)пусть угол ДСВ=х гр,тогда угол АСД=4х гр.
х+4х=90
5х=90
х=18
Значит,угол ДСВ=18 гр,угол АСД=72 гр.
2)угол А=90-72=18(гр);угол В=90-18=72(гр).
2)
треугольник АМВ прямоугольный,угол М=90градуссов,угол МВА=30 градуссов,АМ=половине АВ,так как катет лежит против угла в 30 градуссов,АМ=9 см
По теореме Пифагора можем найти ВМ,АВ в квадрате= АМ в квадрате +ВМ в квадрате
ВМ= корень квадратный из АВ в квадрате минус Ам в квадрате
ВМ=9 корней из 3 см
Надо выбрать точку в любом месте С ДРУГОЙ СТОРОНЫ от прямой, чем отрезок AB (к примеру, AB снизу от прямой, а точку надо выбрать в любом месте сверху). Пусть это точка M.
Теперь Надо провести MA и MB. Эти прямые пересекут прямую в точках A1 и B1.
Затем проводятся диагонали получившейся трапеции AB1 и BA1; они пересекаются в точке O.
И наконец, проводится прямая MO, она поделит AB пополам (и A1B1 - тоже).
Все операции - это "провести прямую через 2 точки", циркуль тут не нужен, только линейка.
Кстати, на мой взгляд, "базовая задача" должна формулироваться иначе "Пусть в произвольном треугольнике проведена медиана к выбранной стороне. На медиане выбрана произвольная точка, и проведены прямые через эту точку и концы выбранной стороны до пересечения с другими сторонами. Доказать, что прямая, соединяющая концы этих отрезков, параллельна выбранной стороне" (то ,что этот отрезок делится пополам медианой, можно не упоминать - это само собой разумеется).
Доказывается это моментально - аналогично теореме Чевы (можно просто на неё сослаться - из того, что одна сторона делится чевианой пополам, сразу получается, что две другие делят стороны в равных отношениях - и это всё доказательство).
Хотя это дело вкуса. Обе задачи равноценны, поскольку обратная задача очевидно верна, ведь через точку можно провести только одну прямую параллельно другой прямой.