Объяснение:
Дано:
CD=AB
O-центр окр
A,B,C,D∈окр
CD=17см
CO=15 см
Найти P(AOB)
Для начала найдет стороны треугольника AOB, для этого совету вспомнить,что O-центр окружности, а A,B,C,D точки лежащие на окружности, значит расстояние от O до любой из этих точек - радиус, получается, что AO=BO=CO=DO=15см, по условию, CD=AB=17см. Периметр - это сумма всех стороны, значит P(AOB)=47см, Сейчас всё оформлю
Пусть ΔAOB - равнобедренный, так как AO=BO=CO=DO как радиусы окружности ⇒
AO=BO=15 см,
AB=CD по условию,⇒ AB=17см⇒
PΔAOB=AO+BO+AB=15+15+17=47см
ответ:47см
АРD - прямоугольный.
Построение рисунка: на основании трапеции CD=21, как на диаметре, строим окружность. Тогда ЛЮБАЯ точка Р на полуокружности даст нам прямой угол. Соединим точки АР и DP прямыми и "встроим" отрезок ВС=7 в треугольник APD параллельно основанию AD.
Проведем окружность с центром в точке О через точки А и В, касающуюся прямой DP. Отметим, что таких окружностей может быть две, симметрично прямой АВ. Пусть точка K - точка касания окружности и прямой DP. Проведем прямую ОО1 параллельно прямой DP. Тогда четырехугольник ОКРН - прямоугольник со стороной ОК - искомым радиусом.
Решение.
Треугольник ВРС подобен треугольнику APD с коэффициентом подобия k=BC/AD=1/3. Тогда ВР/АР=1/3 или ВР/(АВ+ВР)=1/3.
Отсюда 3ВР=АВ+ВР => ВР= 6.
НВ=6 (так как ОН - перпендикуляр из центра окружности к хорде АВ).
Тогда НР=НВ+ВР=12. Но НР=ОК.
ответ: R=12.
P.S. Для окружности с центром в точке О1 решение аналогично и результат тот же.