1) средняя линия равна половине параллельной стороны, поэтому соотношение сторон также 2:2:4
45/(2+2+4)=5,625
5,625*2=11,25
5,625*4=22,5
2) АВ²=АС²+ВС²=5²+(5√3)²=100
AB=10 см
sinB=AC/AB=0.5
угол В=30°
3)Отрезок EF отнюдь не является средней линией треугольника! Есть теорема: каждая медиана треугольника делится точкой их пересечения на 2 части, длины которых относятся как 2:1. То есть отрезок ВО в 2 раза больше отрезка OD.
Рассмотрим два треугольника: основной АВС и верхний EBF. Ясно, что они подобны. Всем известно, что в подобных треугольниках отношение длин сторон одного тр-ка к сторонам другого тр-ка - постоянная величина.. Но это же относится ик другим отрезкам, не только к сторонам. В частности, к медианам.
Легко увидеть, чему равно отношение медиан ВО/BD = 2/3. Значит, и отношение оснований такое же:
EF / 15 = 2/3
Отсюда EF = 10 см.
4)Полученные треугольники AKD и ВКС подобны, поскольку их углы равны друг другу (KAD=КВС, KCB=KDA, BKC=AKD). Это значит, что соотношения их сторон равны. Раз АВ-АК, значит что АК =2*ВK. Отсюда AD = 2*BC. Следовательно BC=AD/2=6 см.
Сумма оснований трапеции = 12+6=18 CM
1) <А+<В=180°(св-во парал.)
<А=х°, тогда <В=х°+30°.
х°+х°+30°=180°
2х°=150°
х=75°
Тогда <А=75°, <В=75°+30°=105°.
ответ: <А=<С=75°, <В=<D=105°.
2) <А+<В=180°(св-во парал.)
<А=х, тогда <В=3х.
х+3х=180°
4х=180°
х=180°:4
х=45°
Тогда <А=45°, <В=45°*3=135°.
ответ: <А=<С=45°, <В=D=135°.
3) Если один из углов параллелограмма равен 90°, то такой параллелограмм - прямоугольник. Значит, все углы по 90°.
4) Если в параллелограмме диагонали равны, то такой параллелограмм - прямоугольник. Значит, все углы по 90°.