№1: . №2:
.
№1.
Пусть , тогда
- секущая.
Теорема: "При пересечении двух параллельных прямых секущей, сумма односторонних углов равна .
, по условию.
и
- односторонние углы
№2.
Обозначим данные прямые буквами
Пусть - секущая прямых
и
Теорема: "При пересечении двух параллельных прямых секущей, накрест лежащие углы равны".
и
- накрест лежащие при пересечении
и
секущей
, однако
.
и
- не параллельны.
============================================================
Свойство: "Вертикальные углы равны".
Свойство: "Сумма смежных углов равна ".
Рассмотрим углы, образовавшиеся при пересечении прямых и
, по свойству вертикальных углов.
, по свойству смежных углов.
, по свойству вертикальных углов.
===========================================================
Рассмотрим углы, образовавшиеся при пересечении прямых и
.
, по свойству вертикальных углов.
, по свойству смежных углов.
, по свойству вертикальных углов.
№1: . №2:
.
№1.
Пусть , тогда
- секущая.
Теорема: "При пересечении двух параллельных прямых секущей, сумма односторонних углов равна .
, по условию.
и
- односторонние углы
№2.
Обозначим данные прямые буквами
Пусть - секущая прямых
и
Теорема: "При пересечении двух параллельных прямых секущей, накрест лежащие углы равны".
и
- накрест лежащие при пересечении
и
секущей
, однако
.
и
- не параллельны.
============================================================
Свойство: "Вертикальные углы равны".
Свойство: "Сумма смежных углов равна ".
Рассмотрим углы, образовавшиеся при пересечении прямых и
, по свойству вертикальных углов.
, по свойству смежных углов.
, по свойству вертикальных углов.
===========================================================
Рассмотрим углы, образовавшиеся при пересечении прямых и
.
, по свойству вертикальных углов.
, по свойству смежных углов.
, по свойству вертикальных углов.
52π (куб. ед.)
Объяснение:
Основания трапеции являются диаметрами оснований конуса. Боковая сторона - образующая конуса.
V=
·π·h·(r₁²+r₁·r₂+r₂²) где
h-высота конуса,
r₁=4÷2=2-радиус верхнего основания,
r₂=10÷2=5-радиус нижнего основания.
Найдем высоту конуса, как катет в прямоугольном треугольнике, образованном гипотенузой - боковой стороной и катетом, равным половине разницы диаметров оснований:
h=√(5²-((10-4)/2)²)=√(25-9)=4
Тогда V=
·π·4·(4+10+25)=52π (куб. ед.)