Вравнобедренном треугольнике abcabcугол bb равен 30∘30∘, ab=bc=6ab=bc=6. проведены высота cdcd треугольника abcabc и высота dede треугольника bdcbdc. найдите bebe.
В равнобедренном треугольнике ABC угол В равен 30°, AB=BC=6, проведены высота CD треугольника ABC и высота DE треугольника BDC. Найдите BE.
——————————
ответ: 4,5 (ед. длины)
Объяснение:
Из ∆ ВDC катет DC противолежит углу 30° ⇒ DC=ВС:2= 6:2=3 (свойство).
Высота прямоугольного треугольник, проведенная к гипотенузе, делит его на треугольники, подобные друг другу и исходному треугольнику. Сумма острых углов прямоугольного треугольника 90°.
Во-первых, только равнобочную трапецию можно вписать в окружность, это значит, что боковые стороны трапеции равны, и углы при основании равны. 1) пусть дана трапеция abcd. пусть меньшее основание = а, большее основание = b. тогда (a+b)/2 = 6 см. 2) проведем диагональ bd и опустим высоты bh и ct. т.к. трапеция равнобочная, то ah = (b-a)/2, тогда dh = b - ( (b-a)/2 ) = (2b - b + a)/2 = (b+a)/2 = 6 см. 3) рассмотрим прямоугольный треуг-к hdb. tg(60 градусов) = bh/dh, bh = tg(60 гр)*dh = sqrt(3)*6 см, т.е. нашли высоту.
Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость. АВ1 - проекция диагонали DB1 призмы на боковую грань АА1В1В. Значит угол АВ1D = α. Тогда сторона основания призмы (квадрата) АD=DB1*Sinα=а*Sinα. Диагональ основания ВD=а*Sinα√2. Высота призмы ВВ1=√(а²-2а²*Sin²α) или h=а√(1-2Sin²α). Объем призмы равен Vп=So*h, или а³Sin²α√(1-2Sin²α). При а=4 и Sin30° объем призмы равен Vп=64*(1/4)*√2/2=8√2. Объем описанного цилиндра равен So*h, где So=πR². R=BD/2=а*Sinα*(√2/2). So=πа²*Sin²α*(1/2). Объем цилиндра равен Vц=πа³*Sin²α*(1/2)*√(1-2Sin²α). При а=4 и Sin30° объем призмы равен Vц=π64*(1/4)*(1/2)*(√2/2)=π*4√2. ответ: Vп=8√2. Vц=π*4√2.
В равнобедренном треугольнике ABC угол В равен 30°, AB=BC=6, проведены высота CD треугольника ABC и высота DE треугольника BDC. Найдите BE.
——————————
ответ: 4,5 (ед. длины)
Объяснение:
Из ∆ ВDC катет DC противолежит углу 30° ⇒ DC=ВС:2= 6:2=3 (свойство).
Высота прямоугольного треугольник, проведенная к гипотенузе, делит его на треугольники, подобные друг другу и исходному треугольнику. Сумма острых углов прямоугольного треугольника 90°.
Угол BСD=90°-∠DBC=90°-30°=60°, угол ЕDC=30°.
CD - гипотенуза прямоугольного ∆ СЕD, катет ЕС противолежит углу 30°,⇒ ЕС=СD:2=3:2=1,5 ⇒
ВЕ=6-1.5=4,5
Или:
Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и проекцией катета на неё.
СD²=BC•EC. Из найденного СD=3.
3²=6•CE ⇒ CE=1,5 a BE=BC-CE=6-1,5=4,5