В плоскости α проведем В₁Н⊥АС. В₁Н - проекция ВН на плоскость α, значит ВН⊥АС по теореме о трех перпендикулярах. Значит
∠ВНВ₁ = 45° - линейный угол двугранного угла ВАСВ₁;
ВН - высота треугольника АВС, искомое расстояние от точки В до прямой АС.
∠ВАН = 180° - ∠ВАС = 180° - 150° = 30° по свойству смежных углов.
В прямоугольном треугольнике АВН, ВН = 1/2 АВ = 1 см по свойству катета, лежащего напротив угла в 30°.
Итак, расстояние от точки В до прямой АС
ВН = 1 см.
ВВ₁ - расстояние от точки В до плоскости α.
ΔВВ₁Н: ∠ВВ₁Н = 90°
ВВ₁ = ВН · sin45° = 1 · √2/2 = √2/2 см
Сумма углов треугольника равна 180.
∠A+∠B+∠C=180
В треугольнике AOB
∠A/2 +∠B/2 +∠AOB =180 => 2∠AOB -∠C =180
∠AOB=∠MON (вертикальные углы)
Сумма противоположных углов вписанного четырехугольника равна 180.
В четырехугольнике CMON
∠MON +∠C =180 => ∠MON=120
CO - биссектриса ∠MON, ∪OM=∪ON => OM=ON (хорды, стягивающие равные дуги)
Треугольник MON равнобедренный, проведем высоту к основанию, в полученном прямоугольном треугольнике катет против угла 60 равен √3/2, следовательно гипотенуза равна 1.
OM=ON=1
Или по теореме косинусов
MN^2= 2OM^2(1-cos(MON)) <=> OM=1