Если в данном прямоугольном треугольнике есть угол, равный 60-ти градусам, то в нём будет угол, равный 30-ти градусам(180-90-60=30). Как нам известно, в треугольниках напротив большего угла лежит бОльшая сторона этого самого треугольника, т.е. напротив угла в 30 градусов лежит меньший катет этого прямоугольного треугольника. А как нам всем известно, в прямоугольном треугольника сторона, лежащая напротив угла в 30 градусов, равна половине его гипотенузы. Т.е. разница между гипотенузой и меньшим катетом треугольника является просто разницей между гипотенузой и её половины. Значит сама гипотенуза равна 6-ти см(3*2=6), а меньший катет равен 3-ём см. ответ: гипотенуза=6 см, меньший катет=3 см.
r = AL - радиус основания;
h = KL - высота
Рисунок во вложения.
Дано:
BD=12 (см)
Угол Д =30градусов
---------------------------------
Найти: S(бок)-?,S(пол)-?
Решение:
Диаметр основания: d=BD*cos30=12*√3/2=6√3 (см)
2. Определяем радиус основания
радиус основания равен половине диаметру основанию
AL=d/2=6√3/2=3√3 (см).
3. Определяем высоту
KL = BD*sin30=12*1/2=6 (см).
4. Определяем площадь боковой поверхности:
S(бок) =2*π*r*h=2*π*3√3*6=36π√3 (см²)
5. И последнее найдём площадь полной поверхности
S(пол)=2*π*r*(r+h)=2π*3√3*(3√3+6)=54π+36π√3 (см²).
6. V=πr²h=π*(3√3)²*6=162π (см³)
ответ: S(бок)=36π√3(см²), S(пол)=56π+36π√3(см)², 162π (см³)