Первая задача на применение теоремы Пифагора. В ней есть перпендикуляр, равный 6см и проекция наклонной, равная 8см, наклонная ищется так √(6²+8²)=√(36+64)=√100=10/см/.
Решение второй задачи сводится к следующему.
М- середина АС, значит, ВМ- медиана ΔАВС, но она проведена к основанию АС равнобедренного треугольника АВС, значит, является и высотой, т.е. ВМ⊥АС, по условию МQ⊥ВМ.
Значит, прямая ВМ перпендикулярна двум пересекающимся прямым плоскости АQC, конкретнее, MQ и AС,
и по признаку перпендикулярности прямой и плоскости, т.е.
если прямая перпендикулярна к двум пересекающимся прямым, лежащим в одной плоскости, то она перпендикулярна к этой плоскости.
ВЫВОД. ВМ⊥ (АQC), доказано.
PS рисунком 19 я только что воспользовался, решая эту же задачу, см. ниже ответ.
1.
Только что решал эту же задачу прощения, без чертежа, нет такой возможности, но прямоугольный треугольник, надеюсь, начертить легко./ Узловые моменты объясняю.
Она на применение теоремы Пифагора. Здесь наклонная MN- гипотенуза, проекция наклонной на плоскость α, равная 8см, это катет. А расстояние до плоскости, подлежащее определению, это другой катет прямоугольного треугольника. Треугольник египетский. Два катета 6см и 8 см, значит, гипотенуза 10 см
ответ 10 см
2.
М- середина АС, значит, ВМ- медиана ΔАВС, но она проведена к основанию АС равнобедренного треугольника АВС, значит, является и высотой, т.е. ВМ⊥АС, по условию МQ⊥ВМ.
Значит, прямая ВМ перпендикулярна двум пересекающимся прямым плоскости АQC, конкретнее, MQ и AС,
и по признаку перпендикулярности прямой и плоскости, т.е.
если прямая перпендикулярна к двум пересекающимся прямым, лежащим в одной плоскости, то она перпендикулярна к этой плоскости.
ВЫВОД. ВМ⊥ (АQC), доказано.
O - центр окружности. угол AOD=108 градусов. Т.к. Трапеция вписана, то она равнобедренная (AB=CD). Если четырехугольник вписан в окружность, то сумма противолежащих углов равна 180 градусов, т.е. угол A + угол C = 180 градусов, угол B + угол D = 180 градусов. А так в трапеции сумма односторонних углов так же равна 180 градусов, т. е. угол A + угол B = 180 градусов и угол С + угол D = 180 градусов, то из этого всего и следует: угол A + угол C = угол A + угол B = 180 градусов, значит угол C = угол B, а это значит, что трапеция равнобедренная (AB=CD). Центр окружности лежит внутри трапеции (для построения). Так же известно, что прямая AC делит угол A пополам. Значит, угол BAC = углу CAD. Но и угол BCA = углу CAD ( как накрест лежащие при пересечении прямых AD и BC секущей AC). А от сюда следует, что и угол BAC = углу BCA, значит треугольник ABC равнобедренный (AB=BC).
AO=BO=CO=CO - радиус окружности. AB=BC=CD. От суда следует, что треугольники ABO, BCO, CDO равны по трем сторонам.
угол BOA = угол СOB = угол DOC = (360-108)/3 = 84 градуса.
Т.к. треугольник ABO равнобедренный, то угол ABO=(180-84)/2=48 градусов. Аналогично найдем угол CBO=48 градусов. А угол ABC=угол ABO + угол CBO = 48 +48 = 96 градусов.
ответ: 96 градусов. (Остается качественно сделать рисунок)