Объяснение:
Первый пункт задачи должен быть сформулирован так:
докажите, что все вершины четырехугольника АВСD лежат в одной плоскости, если его диагонали АС и ВD пересекаются.
Воспользуемся теоремой: через две пересекающиеся прямые можно провести плоскость и при том только одну.
Даны две пересекающиеся прямые АС и ВD. Проходящую через них плоскость обозначим α.
Прямая АС лежит в плоскости α, значит А∈α и В∈α.
Прямая ВD лежит в плоскости α, значит В∈α и D∈α.
Точки А, В, С, D принадлежат плоскости α, т.е. все вершины четырехугольника АВСD принадлежат плоскости α.
Что и требовалось доказать.
может
40 см
Объяснение:
Дано:
ABCD - ромб
∠В = 120 °
BD = 10 см - диагональ ромба
Найти:
Р - периметр ромба
Противоположные углы ромба равны, поэтому ∠D = ∠B = 120°
Острый угол А ромба, против которого лежит диагональ BD
∠А = 180° - ∠В = 180° - 120° = 60°
Диагональ ромба делит углы ромба пополам, поэтому диагональ BD делит угол В и угол D на углы ∠ABD = ∠ADB = 60°.
Тогда треугольник АВD является равносторонним, потому что все углы его равны по 60°, и стороны ромба АВ = AD = 10 см.
У ромба все стороны равны, поэтому ВС = СD = AD = AD = 10 см
Периметр ромба
Р = 4 · 10 =40 (см)
1 геометрическая фигура, образованная тремя отрезками, которые соединяют три не лежащие на одной прямой точки.
Три точки, образующие треугольник, называются вершинами треугольника
На другие лень отвечать