М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
brazervind
brazervind
30.12.2021 14:51 •  Геометрия

.Через конец А отрезка АВ проведена плоскостью . Через точку М, принадлежащей отрезку АВ (такую что

АМ : МВ = 1 : 3) и точку В проведены параллельные прямые,

пересекающие плоскость в точках М1 и В1,

соответственно.

а) Докажите, что точки А, В1, М1 лежат на одной прямой.

б) Найдите ВВ1, если ММ1 = 5 см.

👇
Открыть все ответы
Ответ:
jungkook010997
jungkook010997
30.12.2021

Дано: ΔABC - равнобедренный, АВ=ВС, Sabc= 192 см², АС=АВ+4, окружность, впис. в ΔАВС, OR - радиус, OR= 6 см

Найти: АВ, ВС, АС.

Решение.

Пусть АВ=ВС= х см. По условию основание на 4 см больше, чем боковая сторона, значит, АС= х+4.

Площадь треугольника равна произведению полупериметра треугольника на радиус вписанной окружности.

S= p•r, где S - площадь треугольника, p - его полупериметр, r - радиус вписанной окружности.

Находим периметр ΔАВС.

Р= АВ+ВС+АС= х+х+х+4= 3х+4.

Полупериметр равен соответственно р= (3х+4)/2.

S= p•r;

192= (3x+4)/2 •6;

192= (3х+4)•3;

192= 9х+12;

9х= 192–12;

9х= 180;

х= 20 (см)

Значит, АВ=ВС= 20 см, АС= х+4= 20+4= 24 см.

ответ: 20 см, 20 см, 24 см.

Рисунок фактически здесь вообще не нужен, однако, если Вам так легче это представить...


Задание 4. Площадь равнобедренного треугольника равна 192см2, а радиус вписанной окружности – 6 см.
4,4(60 оценок)
Ответ:
ktotonoto
ktotonoto
30.12.2021

На сколько я понял требуется решить только первую задачу.

Дана трапеция ABCD, AB=CD=7√2 см; AC⊥BD.

Найти радиус описанной около ABCD.

Пусть AC∩BD=F и пусть ∠FAB=α.

Вокруг равнобедренной трапеции всегда можно описать окружность!

ΔABD=ΔDCA по двум сторонам и углу между ними (AB=DC; AD - общая; ∠BAD=∠CDA), поэтому ∠ADB=∠DAC, как углы лежащий напротив равных сторон в равных треугольниках.

В ΔAFD:

∠AFD=90°; ∠FAD=∠FDA=(180°-∠AFD):2=90°:2=45°. Таким образом ΔAFD - равнобедренный прямоугольны, AF=DF.

В прямоугольном ΔAFB:

AF=AB·cosα=7√2·cosα см

BF=AB·sinα=7√2·sinα см

В ΔABD:

BD=BF+FD=BF+AF=7√2·(sinα+cosα) см

∠BAD=α+45°

Вокруг ΔABD описана таже окружность, что и вокруг трапеции.

По теореме синусов: 2R=\dfrac{BD}{sin(BAD)} , где R - радиус описанной.

R=\dfrac{7\sqrt{2}(sin\alpha +cos\alpha)}{2sin(\alpha +45^{\circ})}=\dfrac{7\sqrt{2}(sin\alpha +cos\alpha)}{2(sin\alpha \cdot cos45^{\circ}+cos\alpha\cdot sin45^{\circ})}=\\\\=\dfrac{7\sqrt{2}(sin\alpha +cos\alpha)}{\sqrt2(sin\alpha+cos\alpha)}=7cm

ответ: 7 см.


100б 1) Диагонали равнобокой трапеции перпендикулярные. Найдите радиус окружности, описанной около т
4,4(99 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ