В равнобедренном треугольнике abc с основанием ac боковая сторона ab соответственно равны 5 см и 10 см. Биссектриса AD угла A при основании треугольника делит сторону BC на отрезки BD и DC. Найдите длины этих отрезков
Длина L бокового ребра пирамиды равна:L = H/sinα = 6/(√2/2) = 6√2 см.
б) Площадь боковой поверхности.Так как боковое ребро образует угол 45 градусов с плоскостью основания, то половина диагонали основания равна высоте пирамиды:(d/2) = H = 6 см.Сторона а основания (это квадрат) равна:а = 2*(d/2)*sin45° = 2*6*(√2/2) = 6√2 см.Периметр основания Р = 4а = 24√2 см.Апофема А = √(Н² + (а/2)²) = √(36 + 18) = √54 = 3√6 см.Sбок = (1/2)РА = (1/2)*24√2*3√6 = 72√3 см².
в) Объём пирамиды V = (1/3)SoH = (1/3)a²H = (1/3)*72*6 = 144 см³.
В задачах, связанных с вписанной или описанной окружностью, радиус вписанной, как правило, отмечают r , а описанной - R Следовательно, здесь дан радиус вписанной в правильный треугольник окружности. Радиус вписанной в правильный треугольник окружности равен 1/3 её высоты. Полная высота данного треугольника h=3,5*3=10,5 см Площадь правильного треугольника находят по формуле S=(а²√3):2 , где а - сторона треугольника. Нет необходимости искать сторону треугольника. Есть и другая формула, только через высоту h. S=h²/√3 S=(10,5)²:√3=36,75√3 cм² -- Т.к. h=3 r, данную выше формулу можно записать как S=(3r)²:√3 Результат будет тот же, 36,75 √3.
Длина L бокового ребра пирамиды равна:L = H/sinα = 6/(√2/2) = 6√2 см.
б) Площадь боковой поверхности.Так как боковое ребро образует угол 45 градусов с плоскостью основания, то половина диагонали основания равна высоте пирамиды:(d/2) = H = 6 см.Сторона а основания (это квадрат) равна:а = 2*(d/2)*sin45° = 2*6*(√2/2) = 6√2 см.Периметр основания Р = 4а = 24√2 см.Апофема А = √(Н² + (а/2)²) = √(36 + 18) = √54 = 3√6 см.Sбок = (1/2)РА = (1/2)*24√2*3√6 = 72√3 см².
в) Объём пирамиды V = (1/3)SoH = (1/3)a²H = (1/3)*72*6 = 144 см³.