ВОТ
Объяснение:
Радиус перпендикулярен касательной в точке касания. Касательные из одной точки к окружности равны. Отрезки, соединяющие центр окружности и точку, из которой проведены касательные являются биссектрисами углов между этими касательными и углов между радиусами, проведенными к этим касательным в точки касания. Сумма острых углов прямоугольного треугольника равна 90°. Сумма всех углов с вершиной в центре окружности равна 360°. Следовательно:
<NML=2*28=56°, <MNL=2*31=62°, <NLM=180-56-62=62°, <AOM=90-28=62°, <AON=90-31=59°, <NOB=<AON=59°, <MOC=<AOM=62°, <AOC=2*<AOM=124°, <AOB=2*<AON=118°, <COB=360-124-118=118°, <COL=<BOL=<COB:2 = 59°.
В прямоугольном треугольнике АВС, ∠С=90°. Найти указанную сторону , если а) АВ-? , sinА=0,2 ,ВС=5; б) АВ-? , cosА=0,6 ,ВС=12 ;
в)ВС-? ,sinА=2√10/11, АС=15
Объяснение:
а)Синусом острого угла прямоугольного треугольника называется отношение противолежащего этому углу катета к гипотенузе :
sinА=СВ/АВ , 0,2=5/ АВ , АВ=50:2=25.
б) По основному тригонометрическому тождеству sin²A+cos²A =1 получаем : sin²A+0,6² =1 , sin²A=0,64 , sinA=0,8 , т.к 0° <∠А<90°.
sinА=СВ/АВ , 0,6=12/ АВ , АВ=120:6=20.
в) 1+сtg²А=1/sin²А ( формула),
sin²А=(2√10/11)²=40/121 , 1/sin²А= 121/40,
1+сtg²А=121/40 , сtg²А=81/40 , сtgА=9/(2√10).
Котангенсом острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему катету :
сtgА=АС/СВ , 9/(2√10)=15/ВС , ВС=10√10/3