.Радиус ОА окружности является серединным перпендикуляром хорды СД,также с касательной ,проведенная через точку А,в точке касания образует прямой угол.Поэтому касательная ,проведенная через точку А, параллельна хорде СД.
Вероятно, в задаче идет речь о построении перпендикуляра к прямой, проходящего через данную точку на прямой, с циркуля и линейки.
Дано: прямая а, точка А, принадлежащая прямой.
1) Проведем окружность произвольного радиуса с центром в точке А. Точки пересечения окружности с прямой а обозначим В и С. 2) Проведем две окружности одинакового произвольного радиуса (большего половины отрезка ВС), с центрами в точках В и С. 3) Через точки пересечения этих окружностей (К и Н) проведем прямую b. Прямая b - искомый перпендикуляр к прямой а.
Доказательство: А - середина отрезка ВС по построению (АВ = АС как радиусы одной окружности). Тогда КА - медиана треугольника ВКС. Треугольник ВКС равнобедренный, так как ВК = СК как равные радиусы. Значит медиана КА является и высотой, т.е. КА⊥а.
Объяснение:
А1 1)8
d=2r=2*4=8
A2 3)3π
C=2πr=2π*1,5=3π
A3 3)75°
<вписанного=1/2 <центральный 150°:2=75°
A4 1)28 см
AB+CD=AD+BC
P=2(AB+CD)=2*14=28 см
A52)180°
В1
В окружность вписан квадрат со стороной;
Сторона квадрата а = 8 см;
Найдем длину дуги окружности, стягиваемой стороной квадрата.
1) Длина дуги находиться по формуле:
L = π * R * a/180°;
R = d/2;
d = диагональ квадрата.
2) Найдем диагональ квадрата по теореме Пифагора, если катеты равны стороне квадрата, то есть 8 см.
d = √(8^2 + 8^2) = √(64 + 64) = √(2 * 64) = 8√2 см;
С=πd= 8√2 π см
B2 1),2)3
B3
.Радиус ОА окружности является серединным перпендикуляром хорды СД,также с касательной ,проведенная через точку А,в точке касания образует прямой угол.Поэтому касательная ,проведенная через точку А, параллельна хорде СД.